Deformation Behavior and Dynamic Recrystallization of Biomedical Co-Cr-W-Ni (L-605) Alloy

被引:50
作者
Favre, Julien [1 ]
Koizumi, Yuichiro [2 ]
Chiba, Akihiko [2 ]
Fabregue, Damien [1 ]
Maire, Eric [1 ]
机构
[1] Univ Lyon, MATEIS CNRS UMR5510, INSA Lyon, F-69621 Villeurbanne, France
[2] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2013年 / 44A卷 / 06期
关键词
HOT DEFORMATION; PROCESSING MAPS; COBALT; COMPRESSION;
D O I
10.1007/s11661-012-1602-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical behavior of Co-20Cr-15W-10Ni alloy is studied by compression tests at high temperature. Microstructures after deformation are evaluated using SEM-EBSD. Significant grain refinement occurs by dynamic recrystallization for high temperatures and low strain rates [T > 1373 K (1100 A degrees C), strain rate < 0.1 s(-1)], and at high strain rates (strain rate similar to 10 s(-1)). Dynamic recrystallization is discontinuous and occurs by nucleation of grain boundaries, leading to a necklace-like structure. The nucleation mechanism is most likely bulging of grain boundaries. However, recrystallization occurs also by rotation of annealing twins, which can bulge as well. Modeling of the observed mechanical behavior gives a fair quantification of flow softening due to dynamic recrystallization, indicating the progress of dynamic recrystallization with deformation.
引用
收藏
页码:2819 / 2830
页数:12
相关论文
共 34 条
  • [21] Modeling of dynamic material behavior: A critical evaluation of the dissipator power co-content approach
    Montheillet, F
    Jonas, JJ
    Neale, KW
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (01): : 232 - 235
  • [22] A grain scale approach for modeling steady-state discontinuous dynamic recrystallization
    Montheillet, F.
    Lurdos, O.
    Damamme, G.
    [J]. ACTA MATERIALIA, 2009, 57 (05) : 1602 - 1612
  • [23] Hot working characteristics of cobalt in the temperature range 600-950 °C
    Paul, B.
    Kapoor, R.
    Chakravartty, J. K.
    Bidaye, A. C.
    Sharma, I. G.
    Suri, A. K.
    [J]. SCRIPTA MATERIALIA, 2009, 60 (02) : 104 - 107
  • [24] Pourcher J., MINITUBES SPECIFICAT
  • [25] Prasad Y.V. R. K., 1997, Hot Working Guide: A Compendium of Processing Maps, V1st Editio
  • [26] Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950°C
    Prasad, YVRK
    Rao, KP
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 391 (1-2): : 141 - 150
  • [27] Processing maps: A status report
    Prasad, YVRK
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2003, 12 (06) : 638 - 645
  • [28] MODELING OF DYNAMIC MATERIAL BEHAVIOR IN HOT DEFORMATION - FORGING OF TI-6242
    PRASAD, YVRK
    GEGEL, HL
    DORAIVELU, SM
    MALAS, JC
    MORGAN, JT
    LARK, KA
    BARKER, DR
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1984, 15 (10): : 1883 - 1892
  • [29] DISLOCATION MODELS OF CRYSTAL GRAIN BOUNDARIES
    READ, WT
    SHOCKLEY, W
    [J]. PHYSICAL REVIEW, 1950, 78 (03): : 275 - 289
  • [30] OVERVIEW NO-35 - DYNAMIC RECRYSTALLIZATION - MECHANICAL AND MICROSTRUCTURAL CONSIDERATIONS
    SAKAI, T
    JONAS, JJ
    [J]. ACTA METALLURGICA, 1984, 32 (02): : 189 - 209