Quadrature rule for Abel's equations: Uniformly approximating fractional derivatives

被引:24
作者
Sugiura, Hiroshi [2 ]
Hasegawa, Takemitsu [1 ]
机构
[1] Univ Fukui, Dept Informat Sci, Fukui 9108507, Japan
[2] Nanzan Univ, Dept Informat Syst & Math Sci, Aichi 4890863, Japan
关键词
Abel integral equation; Fractional derivative; Chebyshev interpolation; Quadrature rule; Automatic quadrature; Error analysis; Uniform approximation; GENERALIZED CHEBYSHEV INTERPOLATION; CLENSHAW-CURTIS QUADRATURE; INTEGRAL-EQUATIONS; DIFFUSION; CALCULUS; FFT;
D O I
10.1016/j.cam.2008.01.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An automatic quadrature method is presented for approximating fractional derivative D-q f(x), which is defined by an indefinite integral involving f(x). The present method interpolates f(x) in terms of the Chebyshev polynomials in the range [0, 1] to approximate the fractional derivative D-q f(x) uniformly for 0 <= x <= 1, namely the error is bounded independently of x. Some numerical examples demonstrate the performance of the present automatic method. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:459 / 468
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 1986, Pure and Applied Mathematics (New York)
[2]   Long memory processes and fractional integration in econometrics [J].
Baillie, RT .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :5-59
[3]  
BAKER CTH, 1988, NUMERICAL INTEGRATIO, V3
[4]  
BAKER CTH, 1986, NUMERICAL ALGORITHMS
[5]  
Brunner H., 1986, NUMERICAL SOLUTION V
[6]  
Cafagna D, 2007, IEE IND ELECTRON M, V1, P35, DOI 10.1109/MIE.2007.901479
[7]   THE ANALYSIS OF PRODUCT INTEGRATION METHODS FOR ABELS-EQUATION USING DISCRETE FRACTIONAL DIFFERENTIATION [J].
CAMERON, RF ;
MCKEE, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (03) :339-353
[8]   Pitfalls in fast numerical solvers for fractional differential equations [J].
Diethelm, K ;
Ford, JM ;
Ford, NJ ;
Weilbeer, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 186 (02) :482-503
[9]  
Diethelm K., 1997, ELECTRON T NUMER ANA, V5, P1
[10]   TRUNCATION ERRORS IN 2 CHEBYSHEV SERIES APPROXIMATIONS [J].
ELLIOTT, D .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :234-&