Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth

被引:41
作者
Alves, Claudianor O. [1 ]
Barreiro, Jose L. P. [1 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat & Estat, BR-58429900 Campina Grande, PB, Brazil
关键词
Quasilinear elliptic equations; Critical growth; Variational methods; SPACES;
D O I
10.1016/j.jmaa.2013.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the existence and multiplicity of weak solutions for a class of problems involving the p(x)-Laplacian operator in a bounded domain, where the nonlinearity has a critical growth. The main tool used is the variational method combined with the genus theory for even functionals. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 22 条
[1]   Existence of solution for a degenerate p(x)-Laplacian equation in RN [J].
Alves, Claudianor O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :731-742
[2]  
Alves CO, 2010, DIFFER INTEGRAL EQU, V23, P113
[3]   On superlinear p(x)-Laplacian equations in RN [J].
Alves, Claudianor O. ;
Liu, Shibo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) :2566-2579
[4]  
Alves CO, 2006, PROG NONLINEAR DIFFE, V66, P17
[5]  
[Anonymous], 2010, Encyclopedia of Mathematics and its Applications
[6]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[7]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[8]  
Chabrowski J., 1999, WEAK COVERGENCE METH
[9]  
de Freitas L.R., 2010, THESIS USP SAO CARLO
[10]  
Diening L., 2004, FSDONA04 Proc, V66, P38