Robust fractional quantum Hall effect in the N=2 Landau level in bilayer graphene

被引:28
作者
Diankov, Georgi [1 ]
Liang, Chi-Te [1 ,2 ]
Amet, Francois [3 ,4 ]
Gallagher, Patrick [1 ]
Lee, Menyoung [1 ]
Bestwick, Andrew J. [1 ]
Tharratt, Kevin [1 ]
Coniglio, William [5 ]
Jaroszynski, Jan [5 ]
Watanabe, Kenji [6 ]
Taniguchi, Takashi [6 ]
Goldhaber-Gordon, David [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA
[5] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[6] Natl Inst Mat Sci, Adv Mat Lab, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
美国国家科学基金会;
关键词
FERMIONS;
D O I
10.1038/ncomms13908
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional quantum Hall effect is a canonical example of electron-electron interactions producing new ground states in many-body systems. Most fractional quantum Hall studies have focussed on the lowest Landau level, whose fractional states are successfully explained by the composite fermion model. In the widely studied GaAs-based system, the composite fermion picture is thought to become unstable for the N >= 2 Landau level, where competing many-body phases have been observed. Here we report magneto-resistance measurements of fractional quantum Hall states in the N = 2 Landau level (filling factors 4 < vertical bar n vertical bar < 8) in bilayer graphene. In contrast with recent observations of particle-hole asymmetry in the N = 0/N = 1 Landau levels of bilayer graphene, the fractional quantum Hall states we observe in the N = 2 Landau level obey particle-hole symmetry within the fully symmetry-broken Landau level. Possible alternative ground states other than the composite fermions are discussed.
引用
收藏
页数:6
相关论文
共 43 条
  • [1] Composite fermions and broken symmetries in graphene
    Amet, F.
    Bestwick, A. J.
    Williams, J. R.
    Balicas, L.
    Watanabe, K.
    Taniguchi, T.
    Goldhaber-Gordon, D.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] Insulating Behavior at the Neutrality Point in Single-Layer Graphene
    Amet, F.
    Williams, J. R.
    Watanabe, K.
    Taniguchi, T.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (21)
  • [3] Controllable Driven Phase Transitions in Fractional Quantum Hall States in Bilayer Graphene
    Apalkov, Vadim M.
    Chakraborty, Tapash
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (03)
  • [4] ACTIVATION-ENERGIES AND LOCALIZATION IN THE FRACTIONAL QUANTUM HALL-EFFECT
    BOEBINGER, GS
    STORMER, HL
    TSUI, DC
    CHANG, AM
    HWANG, JCM
    CHO, AY
    TU, CW
    [J]. PHYSICAL REVIEW B, 1987, 36 (15): : 7919 - 7929
  • [5] Bolotin K. I., 2009, NATURE, V62, P96
  • [6] Traits and characteristics of interacting Dirac fermions in monolayer and bilayer graphene
    Chakraborty, Tapash
    Apalkov, Vadim M.
    [J]. SOLID STATE COMMUNICATIONS, 2013, 175 : 123 - 131
  • [7] Activation gaps of fractional quantum Hall effect in the second Landau level
    Choi, H. C.
    Kang, W.
    Das Sarma, S.
    Pfeiffer, L. N.
    West, K. W.
    [J]. PHYSICAL REVIEW B, 2008, 77 (08):
  • [8] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    [J]. NATURE, 2013, 497 (7451) : 598 - 602
  • [9] Dean CR, 2011, NAT PHYS, V7, P693, DOI [10.1038/NPHYS2007, 10.1038/nphys2007]
  • [10] Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
    Du, Xu
    Skachko, Ivan
    Duerr, Fabian
    Luican, Adina
    Andrei, Eva Y.
    [J]. NATURE, 2009, 462 (7270) : 192 - 195