Robust fractional quantum Hall effect in the N=2 Landau level in bilayer graphene

被引:28
作者
Diankov, Georgi [1 ]
Liang, Chi-Te [1 ,2 ]
Amet, Francois [3 ,4 ]
Gallagher, Patrick [1 ]
Lee, Menyoung [1 ]
Bestwick, Andrew J. [1 ]
Tharratt, Kevin [1 ]
Coniglio, William [5 ]
Jaroszynski, Jan [5 ]
Watanabe, Kenji [6 ]
Taniguchi, Takashi [6 ]
Goldhaber-Gordon, David [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA
[5] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[6] Natl Inst Mat Sci, Adv Mat Lab, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan
基金
美国国家科学基金会;
关键词
FERMIONS;
D O I
10.1038/ncomms13908
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional quantum Hall effect is a canonical example of electron-electron interactions producing new ground states in many-body systems. Most fractional quantum Hall studies have focussed on the lowest Landau level, whose fractional states are successfully explained by the composite fermion model. In the widely studied GaAs-based system, the composite fermion picture is thought to become unstable for the N >= 2 Landau level, where competing many-body phases have been observed. Here we report magneto-resistance measurements of fractional quantum Hall states in the N = 2 Landau level (filling factors 4 < vertical bar n vertical bar < 8) in bilayer graphene. In contrast with recent observations of particle-hole asymmetry in the N = 0/N = 1 Landau levels of bilayer graphene, the fractional quantum Hall states we observe in the N = 2 Landau level obey particle-hole symmetry within the fully symmetry-broken Landau level. Possible alternative ground states other than the composite fermions are discussed.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Composite fermions and broken symmetries in graphene [J].
Amet, F. ;
Bestwick, A. J. ;
Williams, J. R. ;
Balicas, L. ;
Watanabe, K. ;
Taniguchi, T. ;
Goldhaber-Gordon, D. .
NATURE COMMUNICATIONS, 2015, 6
[2]   Insulating Behavior at the Neutrality Point in Single-Layer Graphene [J].
Amet, F. ;
Williams, J. R. ;
Watanabe, K. ;
Taniguchi, T. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (21)
[3]   Controllable Driven Phase Transitions in Fractional Quantum Hall States in Bilayer Graphene [J].
Apalkov, Vadim M. ;
Chakraborty, Tapash .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[4]   ACTIVATION-ENERGIES AND LOCALIZATION IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
BOEBINGER, GS ;
STORMER, HL ;
TSUI, DC ;
CHANG, AM ;
HWANG, JCM ;
CHO, AY ;
TU, CW .
PHYSICAL REVIEW B, 1987, 36 (15) :7919-7929
[5]  
Bolotin K. I., 2009, NATURE, V62, P96
[6]   Traits and characteristics of interacting Dirac fermions in monolayer and bilayer graphene [J].
Chakraborty, Tapash ;
Apalkov, Vadim M. .
SOLID STATE COMMUNICATIONS, 2013, 175 :123-131
[7]   Activation gaps of fractional quantum Hall effect in the second Landau level [J].
Choi, H. C. ;
Kang, W. ;
Das Sarma, S. ;
Pfeiffer, L. N. ;
West, K. W. .
PHYSICAL REVIEW B, 2008, 77 (08)
[8]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[9]  
Dean CR, 2011, NAT PHYS, V7, P693, DOI [10.1038/NPHYS2007, 10.1038/nphys2007]
[10]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195