A note on the priority of optimal multipoint methods for solving nonlinear equations

被引:6
作者
Petkovic, M. S. [1 ]
机构
[1] Univ Nis, Dept Math, Fac Elect Engn, Nish 18000, Serbia
关键词
Nonlinear equations; Multipoint iterative methods; Optimal methods; Priority; Historical notes; 3-STEP ITERATIVE METHODS; ORDER; FAMILY;
D O I
10.1016/j.amc.2012.11.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this note is to clarify some questions of the priority and chronology of three-point optimal methods which could provide a better insight into the topic. We present two methods that appeared before the method of Bi et al. [W. Bi, Q. Wu, H. Ren, A new family of eight-order iterative methods for solving nonlinear equations, Appl. Math. Comput. 214 (2009) 236-245], which is often cited in the literature as the successor of the Kung-Traub method from 1974. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5249 / 5252
页数:4
相关论文
共 11 条
[1]   A new family of eighth-order iterative methods for solving nonlinear equations [J].
Bi, Weihong ;
Wu, Qingbiao ;
Ren, Hongmin .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) :236-245
[2]   A note on some quadrature based three-step iterative methods for non-linear equations [J].
Ding, Heng-fei ;
Zhang, Yu-xin ;
Wang, San-fu ;
Yang, Xiao-ya .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) :53-57
[3]  
Jarratt P., 1969, BIT (Nordisk Tidskrift for Informationsbehandling), V9, P119, DOI 10.1007/BF01933248
[4]   SOME 4TH ORDER MULTIPOINT ITERATIVE METHODS FOR EQUATIONS [J].
JARRATT, P .
MATHEMATICS OF COMPUTATION, 1966, 20 (95) :434-&
[5]   FAMILY OF FOURTH ORDER METHODS FOR NONLINEAR EQUATIONS [J].
KING, RF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :876-879
[6]   OPTIMAL ORDER OF ONE-POINT AND MULTIPOINT ITERATION [J].
KUNG, HT ;
TRAUB, JF .
JOURNAL OF THE ACM, 1974, 21 (04) :643-651
[7]   Some quadrature based three-step iterative methods for non-linear equations [J].
Mir, Nazir Ahmad ;
Zaman, Tooba .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (02) :366-373
[8]   Some quadrature based three-step iterative methods for non-linear equations [J].
Mir, Nazir Ahmad ;
Zaman, Tooba .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (02) :366-373
[9]   ON A FAMILY OF MULTIPOINT METHODS FOR NON-LINEAR EQUATIONS [J].
NETA, B .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1981, 9 (04) :353-361
[10]  
Ostrowski A.M, 1960, Solution of equations and systems of equations