Stability of q-fractional non-autonomous systems

被引:89
作者
Jarad, Fahd [1 ]
Abdeljawad, Thabet [1 ]
Baleanu, Dumitru [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
q-calculus; q-fractional integral; q-fractional derivative; Stability;
D O I
10.1016/j.nonrwa.2012.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, using Lyapunov's direct method, the stability of non-autonomous systems within the frame of the q-Caputo fractional derivative is studied. The conditions for stability, uniform stability and asymptotic stability are discussed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:780 / 784
页数:5
相关论文
共 24 条
[1]   Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4682-4688
[2]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[3]  
ALSALAM WA, 1975, PAC J MATH, V60, P1
[4]  
[Anonymous], 2006, THEORY APPL FRACTION
[5]  
[Anonymous], P EDINB MATH SOC
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]  
[Anonymous], 1993, THEORY APPL
[8]  
[Anonymous], 1953, P AM MATH SOC
[9]  
[Anonymous], HIST Q CALCULAS NEW
[10]   Fractional q-calculus on a time scale [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) :333-344