The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors

被引:75
作者
Mielke, A
机构
[1] Inst. für Angewandte Mathematik, Universität Hannover, D-30167 Hannover
关键词
D O I
10.1088/0951-7715/10/1/014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using weighted L(P)-norms we derive new bounds on the long-time behaviour of the solutions improving on the known results of the polynomial growth with respect to the instability parameter. These estimates are valid for quite arbitrary, possibly unbounded domains. We establish precise estimates on the maximal influence of the boundaries on the dynamics in the interior. For instance, the attractor Al for the domain (-l, l)(d) with periodic boundary conditions is upper semicontinuous to A(infinity).
引用
收藏
页码:199 / 222
页数:24
相关论文
共 26 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[3]  
[Anonymous], DYNAMICAL SYSTEMS PR
[4]  
[Anonymous], 1988, APPL MATH SCI
[5]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[6]   Length scales in solutions of the complex Ginzburg-Landau equation [J].
Bartuccelli, MV ;
Gibbon, JD ;
Oliver, M .
PHYSICA D, 1996, 89 (3-4) :267-286
[7]  
BARTUCELLI MV, 1990, PHYSICA D, V44, P412
[8]   THE TIME-DEPENDENT AMPLITUDE EQUATION FOR THE SWIFT-HOHENBERG PROBLEM [J].
COLLET, P ;
ECKMANN, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :139-153
[9]   THERMODYNAMIC LIMIT OF THE GINZBURG-LANDAU EQUATIONS [J].
COLLET, P .
NONLINEARITY, 1994, 7 (04) :1175-1190
[10]   Local models of spatio-temporally complex fields [J].
Dankowicz, H ;
Holmes, P ;
Berkooz, G ;
Elezgaray, J .
PHYSICA D, 1996, 90 (04) :387-407