Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning

被引:6
|
作者
Georgakopoulos, S., V [1 ]
Kottari, K. [1 ]
Delibasis, K. [1 ]
Plagianakos, V. P. [1 ,2 ]
Maglogiannis, I [2 ]
机构
[1] Univ Thessaly, Dept Comp Sci & Biomed Informat, Papassiopoulou 2-4, Lamia, Greece
[2] Univ Piraeus, Dept Digital Syst, Piraeus, Greece
来源
ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017 | 2017年 / 744卷
关键词
Skin lesion; Melanoma detection; Computer Vision-based diagnostic systems; Convolutional neural networks - CNN; CNN architectures; Transfer learning; SKIN-CANCER; DIAGNOSIS; STREAKS;
D O I
10.1007/978-3-319-65172-9_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we report the use of convolutional neural networks for the detection of malignant melanomas against nevus skin lesions in a dataset of dermoscopic images of the same magnification. The technique of transfer learning is utilized to compensate for the limited size of the available image dataset. Results show that including transfer learning in training CNN architectures improves significantly the achieved classification results.
引用
收藏
页码:404 / 414
页数:11
相关论文
共 50 条
  • [1] Skin cancer detection using dermoscopic images with convolutional neural network
    Nawaz, Khadija
    Zanib, Atika
    Shabir, Iqra
    Li, Jianqiang
    Wang, Yu
    Mahmood, Tariq
    Rehman, Amjad
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
    Shetty, Bhuvaneshwari
    Fernandes, Roshan
    Rodrigues, Anisha P.
    Chengoden, Rajeswari
    Bhattacharya, Sweta
    Lakshmanna, Kuruva
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
    Bhuvaneshwari Shetty
    Roshan Fernandes
    Anisha P. Rodrigues
    Rajeswari Chengoden
    Sweta Bhattacharya
    Kuruva Lakshmanna
    Scientific Reports, 12
  • [4] Transfer Learning with Convolutional Neural Network for Gastrointestinal Diseases Detection using Endoscopic Images
    Paola Escobar, Jessica
    Gomez, Natalia
    Sanchez, Karen
    2020 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (IEEE COLCACI 2020), 2020,
  • [5] Acral melanoma detection using dermoscopic images and convolutional neural networks
    Qaiser Abbas
    Farheen Ramzan
    Muhammad Usman Ghani
    Visual Computing for Industry, Biomedicine, and Art, 4
  • [6] Acral melanoma detection using dermoscopic images and convolutional neural networks
    Abbas, Qaiser
    Ramzan, Farheen
    Ghani, Muhammad Usman
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2021, 4 (01)
  • [7] Classifying Melanoma in ISIC Dermoscopic Images Using Efficient Convolutional Neural Networks and Deep Transfer Learning
    Mahmoud, Habeba
    Omer, Osama A.
    Ragab, Shimaa
    Esmaiel, Hamada
    Abdel-Nasser, Mohamed
    TRAITEMENT DU SIGNAL, 2024, 41 (02) : 679 - 691
  • [8] Author Correction: Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
    Bhuvaneshwari Shetty
    Roshan Fernandes
    Anisha P. Rodrigues
    Rajeswari Chengoden
    Sweta Bhattacharya
    Kuruva Lakshmanna
    Scientific Reports, 12 (1)
  • [9] Pigment network detection and classification in dermoscopic images using directional imaging algorithms and convolutional neural networks
    Rasel, M. A.
    Kareem, Sameem Abdul
    Obaidellah, Unaizah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [10] Automated skin lesion detection and classification using fused deep convolutional neural network on dermoscopic images
    Pramila, Rayappa Priyanka
    Subhashini, Radhakrishnan
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (06) : 1073 - 1087