THE SEMICLASSICAL LIMIT OF THE TIME DEPENDENT HARTREE-FOCK EQUATION: THE WEYL SYMBOL OF THE SOLUTION

被引:25
作者
Amour, Laurent [1 ]
Khodja, Mohamed [1 ]
Nourrigat, Jean [1 ]
机构
[1] Univ Reims, Lab Math Reims, FR CNRS 3399, EA 4535, F-51687 Reims, France
关键词
time dependent Hartree-Fock equation; Vlasov equation; semiclassical analysis; Egorov theorem; pseudodifferential operators; MEAN-FIELD LIMIT; DYNAMICS; SYSTEMS;
D O I
10.2140/apde.2013.6.1649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a family of solutions to the time dependent Hartree-Fock equation, depending on the semiclassical parameter h, we prove that if at the initial time the Weyl symbol of the solution is in L-1(R-2n) as well as all its derivatives, then this property is true for all time, and we give an asymptotic expansion in powers of h of this Weyl symbol. The main term of the asymptotic expansion is a solution to the Vlasov equation, and the error term is estimated in the norm of L-1(R-2n).
引用
收藏
页码:1649 / 1674
页数:26
相关论文
共 33 条
[1]   Mean field limit for bosons and propagation of Wigner measures [J].
Ammari, Z. ;
Nier, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
[2]   Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis [J].
Ammari, Zied ;
Nier, Francis .
ANNALES HENRI POINCARE, 2008, 9 (08) :1503-1574
[3]  
Amour L., 2011, PREPRINT
[4]  
[Anonymous], 1980, LECT NOTES PHYS
[5]  
[Anonymous], 1989, ANN MATH STUDIES
[6]  
[Anonymous], 2002, An introduction to semiclassical and microlocal analysis
[7]   Mean field dynamics of fermions and the time-dependent Hartree-Fock equation [J].
Bardos, C ;
Golse, F ;
Gottlieb, AD ;
Mauser, NJ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06) :665-683
[8]   CHARACTERIZATION OF PSEUDODIFFERENTIAL OPERATORS AND APPLICATIONS [J].
BEALS, R .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (01) :45-57
[9]   HARTREE-FOCK TIME-DEPENDENT PROBLEM [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) :25-33
[10]   EXISTENCE PROOF FOR HARTREE-FOCK TIME-DEPENDENT PROBLEM WITH BOUNDED 2-BODY INTERACTION [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 37 (03) :183-191