First and Second Zagreb Eccentricity Indices of Thorny Graphs

被引:11
作者
Idrees, Nazeran [1 ]
Saif, Muhammad Jawwad [2 ]
Rauf, Asia [3 ]
Mustafa, Saba [1 ]
机构
[1] Univ Faisalabad, Govt Coll, Dept Math, Faisalabad 38000, Pakistan
[2] Univ Faisalabad, Govt Coll, Dept Appl Chem, Faisalabad 38000, Pakistan
[3] Univ Faisalabad, Govt Coll Women, Dept Math, Faisalabad 38000, Pakistan
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 01期
关键词
graphs; vertices; complete graph; path; star; cycle; ANTI-HIV ACTIVITY; TOPOLOGICAL DESCRIPTOR; CONNECTIVITY INDEX; DISTANCE SUM; DERIVATIVES;
D O I
10.3390/sym9010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index (E-1(H)) is defined to be the summation of squares of the eccentricity of vertices, i.e., E-1(H) = Sigma(u epsilon v(H)) epsilon H-2(u).The second Zagreb eccentricity index (E2(H)) is the summation of product of the eccentricities of the adjacent vertices, i.e.,(E-2(H) = Sigma(uv epsilon E)(H)epsilon(H)(u)epsilon(H()v).We obtain the thorny graph H by attaching thorns i.e.,vertices of degree one to every vertex of H. In this paper,we will find closed formulation for the first Zagreb eccentricity index and second Zagreb eccentricity index of different well known classes of thorny graphs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Remarks on the sum of squares of eccentricity of graphs
    Hu, Ming-jun
    Wang, Lu-bang
    UTILITAS MATHEMATICA, 2014, 93 : 375 - 381
  • [42] Computing Some Eccentricity-Based Topological Indices of Para-Line Graphs of Hexagonal Cactus Chains
    Durgut, Rafet
    Turaci, Tufan
    POLYCYCLIC AROMATIC COMPOUNDS, 2023, 43 (01) : 115 - 130
  • [43] Improved Inequality between Zagreb Indices of Trees
    Stevanovic, Dragan
    Milanic, Martin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 147 - 156
  • [44] Zagreb connection indices in structure property modelling
    Mondal, Sourav
    Das, Kinkar Chandra
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3005 - 3020
  • [45] Computing the Eccentricity Distribution of Large Graphs
    Takes, Frank W.
    Kosters, Walter A.
    ALGORITHMS, 2013, 6 (01) : 100 - 118
  • [46] The sum of squares of eccentricity of connected graphs
    Wen, Shu
    UTILITAS MATHEMATICA, 2012, 87 : 235 - 243
  • [47] Two modified Zagreb indices for random structures
    Li, Siman
    Shi, Li
    Gao, Wei
    MAIN GROUP METAL CHEMISTRY, 2021, 44 (01) : 150 - 156
  • [48] Eccentricity based topological indices of a hetrofunctional dendrimer
    Farooq, R.
    Nazir, N.
    Malik, M. Ali
    Arfan, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (11-12): : 1799 - 1807
  • [49] Study for Some Eccentricity-based Topological Indices of Second Type of Dominating David-derived Network
    Liu, Jia-Bao
    Ali, Haidar
    Ali, Didar Abdulkhaleq
    Umer, Ayesha
    Ali, Parvez
    Kirmani, Syed Ajaz K.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024, 27 (05) : 666 - 673
  • [50] Eccentricity Based Topological Indices of an Oxide Network
    Imran, Muhammad
    Siddiqui, Muhammad Kamran
    Abunamous, Amna A. E.
    Adi, Dana
    Rafique, Saida Hafsa
    Baig, Abdul Qudair
    MATHEMATICS, 2018, 6 (07):