First and Second Zagreb Eccentricity Indices of Thorny Graphs

被引:11
作者
Idrees, Nazeran [1 ]
Saif, Muhammad Jawwad [2 ]
Rauf, Asia [3 ]
Mustafa, Saba [1 ]
机构
[1] Univ Faisalabad, Govt Coll, Dept Math, Faisalabad 38000, Pakistan
[2] Univ Faisalabad, Govt Coll, Dept Appl Chem, Faisalabad 38000, Pakistan
[3] Univ Faisalabad, Govt Coll Women, Dept Math, Faisalabad 38000, Pakistan
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 01期
关键词
graphs; vertices; complete graph; path; star; cycle; ANTI-HIV ACTIVITY; TOPOLOGICAL DESCRIPTOR; CONNECTIVITY INDEX; DISTANCE SUM; DERIVATIVES;
D O I
10.3390/sym9010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index (E-1(H)) is defined to be the summation of squares of the eccentricity of vertices, i.e., E-1(H) = Sigma(u epsilon v(H)) epsilon H-2(u).The second Zagreb eccentricity index (E2(H)) is the summation of product of the eccentricities of the adjacent vertices, i.e.,(E-2(H) = Sigma(uv epsilon E)(H)epsilon(H)(u)epsilon(H()v).We obtain the thorny graph H by attaching thorns i.e.,vertices of degree one to every vertex of H. In this paper,we will find closed formulation for the first Zagreb eccentricity index and second Zagreb eccentricity index of different well known classes of thorny graphs.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Computing Zagreb Indices and Zagreb Polynomials for Symmetrical Nanotubes
    Shao, Zehui
    Siddiqui, Muhammad Kamran
    Muhammad, Mehwish Hussain
    SYMMETRY-BASEL, 2018, 10 (07):
  • [32] Extremal (n,m)-Graphs w.r.t General Multiplicative Zagreb Indices
    Javed, Aisha
    Jamil, Muhammad Kamran
    Liu, Jia-Bao
    Ali, Akbar
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (03) : 476 - 482
  • [33] On Comparing the Variable Zagreb Indices
    Huang, Yufei
    Liu, Bolian
    Zhang, Meng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (02) : 453 - 460
  • [34] NEW BOUNDS ON ZAGREB INDICES
    Liu, Zhongzhu
    Ma, Qinghua
    Chen, Yizhi
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 167 - 179
  • [35] On the Constant Difference of Zagreb Indices
    Milosevic, Marko
    Reti, Tamas
    Stevanovic, Dragan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 157 - 168
  • [36] Note on the multiplicative Zagreb indices
    Kazemi, Ramin
    DISCRETE APPLIED MATHEMATICS, 2016, 198 : 147 - 154
  • [37] On Extremal Modified Zagreb Indices of Trees
    Liu, Chang
    Li, Jianping
    Pan, Yingui
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 85 (02) : 349 - 366
  • [38] Laplacian coefficients and Zagreb indices of trees
    Ashrafi, A. R.
    Eliasi, M.
    Ghalavand, A.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (09) : 1736 - 1749
  • [39] The eccentricity-based topological indices
    Kizilirmak, Gul Ozkan
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (02) : 294 - 305
  • [40] On reduced second Zagreb index
    Buyantogtokh, Lkhagva
    Horoldagva, Batmend
    Das, Kinkar Chandra
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (03) : 776 - 791