First and Second Zagreb Eccentricity Indices of Thorny Graphs

被引:11
作者
Idrees, Nazeran [1 ]
Saif, Muhammad Jawwad [2 ]
Rauf, Asia [3 ]
Mustafa, Saba [1 ]
机构
[1] Univ Faisalabad, Govt Coll, Dept Math, Faisalabad 38000, Pakistan
[2] Univ Faisalabad, Govt Coll, Dept Appl Chem, Faisalabad 38000, Pakistan
[3] Univ Faisalabad, Govt Coll Women, Dept Math, Faisalabad 38000, Pakistan
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 01期
关键词
graphs; vertices; complete graph; path; star; cycle; ANTI-HIV ACTIVITY; TOPOLOGICAL DESCRIPTOR; CONNECTIVITY INDEX; DISTANCE SUM; DERIVATIVES;
D O I
10.3390/sym9010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index (E-1(H)) is defined to be the summation of squares of the eccentricity of vertices, i.e., E-1(H) = Sigma(u epsilon v(H)) epsilon H-2(u).The second Zagreb eccentricity index (E2(H)) is the summation of product of the eccentricities of the adjacent vertices, i.e.,(E-2(H) = Sigma(uv epsilon E)(H)epsilon(H)(u)epsilon(H()v).We obtain the thorny graph H by attaching thorns i.e.,vertices of degree one to every vertex of H. In this paper,we will find closed formulation for the first Zagreb eccentricity index and second Zagreb eccentricity index of different well known classes of thorny graphs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number
    Li, Shuchao
    Zhao, Qin
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) : 2869 - 2879
  • [22] On the connective eccentricity index of graphs with fixed clique number
    Wang, Xia
    Tang, Lang
    Chen, Xuesheng
    Li, Maosheng
    Li, Yin
    ARS COMBINATORIA, 2018, 138 : 105 - 117
  • [23] General multiplicative Zagreb indices of trees
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 341 - 351
  • [24] The second-minimum and second-maximum values of exponential Zagreb indices among trees
    Yang, Lu
    Zhu, Yan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [25] On reformulated Zagreb indices
    Ilic, Aleksandar
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (03) : 204 - 209
  • [26] The extremal values of connective eccentricity index for trees and unicyclic graphs
    Tang, Lang
    Wang, Xia
    Liu, Weijun
    Feng, Lihua
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (03) : 437 - 453
  • [27] The first Zagreb and forgotten topological indices of d-ary trees
    Kazemi, Ramin
    Behtoei, Ali
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (04): : 603 - 611
  • [28] On the connective eccentricity index of trees and unicyclic graphs with given diameter
    Yu, Guihai
    Qu, Hui
    Tang, Lang
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 1776 - 1786
  • [29] On the extremal graphs with respect to the total reciprocal edge-eccentricity
    Zhao, Lifang
    Li, Hongshuai
    Gao, Yuping
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 115 - 137
  • [30] Maximizing and Minimizing Multiplicative Zagreb Indices of Graphs Subject to Given Number of Cut Edges
    Wang, Shaohui
    Wang, Chunxiang
    Chen, Lin
    Liu, Jia-Bao
    Shao, Zehui
    MATHEMATICS, 2018, 6 (11):