First and Second Zagreb Eccentricity Indices of Thorny Graphs

被引:11
作者
Idrees, Nazeran [1 ]
Saif, Muhammad Jawwad [2 ]
Rauf, Asia [3 ]
Mustafa, Saba [1 ]
机构
[1] Univ Faisalabad, Govt Coll, Dept Math, Faisalabad 38000, Pakistan
[2] Univ Faisalabad, Govt Coll, Dept Appl Chem, Faisalabad 38000, Pakistan
[3] Univ Faisalabad, Govt Coll Women, Dept Math, Faisalabad 38000, Pakistan
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 01期
关键词
graphs; vertices; complete graph; path; star; cycle; ANTI-HIV ACTIVITY; TOPOLOGICAL DESCRIPTOR; CONNECTIVITY INDEX; DISTANCE SUM; DERIVATIVES;
D O I
10.3390/sym9010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index (E-1(H)) is defined to be the summation of squares of the eccentricity of vertices, i.e., E-1(H) = Sigma(u epsilon v(H)) epsilon H-2(u).The second Zagreb eccentricity index (E2(H)) is the summation of product of the eccentricities of the adjacent vertices, i.e.,(E-2(H) = Sigma(uv epsilon E)(H)epsilon(H)(u)epsilon(H()v).We obtain the thorny graph H by attaching thorns i.e.,vertices of degree one to every vertex of H. In this paper,we will find closed formulation for the first Zagreb eccentricity index and second Zagreb eccentricity index of different well known classes of thorny graphs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On Zagreb Eccentricity Indices
    Xing, Rundan
    Zhou, Bo
    Trinajstic, Nenad
    CROATICA CHEMICA ACTA, 2011, 84 (04) : 493 - 497
  • [2] On Zagreb Eccentricity Indices of Trees
    Qi, Xuli
    Du, Zhibin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 78 (01) : 241 - 256
  • [3] EXTREMAL FIRST AND SECOND ZAGREB INDICES OF APEX TREES
    Akhter, Naveed
    Jamil, Muhammad Kamran
    Tomescu, Joan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 221 - 230
  • [4] Comparison of Wiener Index and Zagreb Eccentricity Indices
    Xu, Kexiang
    Das, Kinkar Chandra
    Klavzar, Sandi
    Li, Huimin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 84 (03) : 595 - 610
  • [5] The connective eccentricity index and modified second Zagreb index of Parikh word representable graphs
    Hua, Hongbo
    Wang, Maolin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3689 - 3704
  • [6] Some Basic Properties of the Second Multiplicative Zagreb Eccentricity Index
    Azari, Mahdieh
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 15 (01): : 17 - 25
  • [7] EDGE-ZAGREB INDICES OF GRAPHS
    Yamac, C.
    Oz, M. S.
    Cangul, I. N.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 1 - 10
  • [8] On two eccentricity-based topological indices of graphs
    Xu, Kexiang
    Alizadeh, Yaser
    Das, Kinkar Ch.
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 240 - 251
  • [9] On Connective Eccentricity Index of Graphs
    Yu, Guihai
    Feng, Lihua
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (03) : 611 - 628
  • [10] Sharp Lower Bound of Cacti Graph with respect to Zagreb Eccentricity Indices
    Alamer, Ahmed
    Hakami, Khalil Hadi
    Rahimi, Mohammad Rahim
    Ahmad, Yasir
    JOURNAL OF MATHEMATICS, 2024, 2024