Anisotropic Nonconforming Quadrilateral Finite Element Approximation to Second Order Elliptic Problems

被引:0
作者
Shi, Dong-yang [1 ]
Xu, Chao [1 ,2 ]
Chen, Jin-huan [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Anisotropy; Nonconforming EQ(1)(rot) quadrilateral element; Optimal order error estimates; QUASI-WILSON ELEMENT; SUPERCONVERGENCE; MESHES; INTERPOLATION; EQUATIONS; CONVERGENCE; ACCURACY;
D O I
10.1007/s10915-013-9690-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to study the nonconforming quadrilateral finite element approximation to second order elliptic problems on anisotropic meshes. The optimal order error estimates in broken energy norm and -norm are obtained, and three numerical experiments are carried out to confirm the theoretical results.
引用
收藏
页码:637 / 653
页数:17
相关论文
共 31 条
[1]  
Apel T, 2001, NUMER MATH, V89, P193, DOI 10.1007/s002110000256
[2]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[3]   Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements [J].
Apel, T .
COMPUTING, 1998, 60 (02) :157-174
[4]  
APEL T, 1999, ANISOTROPIC FINITE E
[5]   Anisotropic interpolations with application to nonconforming elements [J].
Chen, SC ;
Zhao, YC ;
Shi, DY .
APPLIED NUMERICAL MATHEMATICS, 2004, 49 (02) :135-152
[6]   Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes [J].
Chen, SC ;
Shi, DY ;
Zhao, YC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :77-95
[7]   Accuracy analysis for quasi-Wilson element [J].
Chen, SC ;
Shi, DY .
ACTA MATHEMATICA SCIENTIA, 2000, 20 (01) :44-48
[8]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[9]  
Douglas J, 1999, RAIRO-MATH MODEL NUM, V33, P747
[10]  
Jiang J., 1992, NUMER MATH, V14, P274