A QUANTITATIVE SECOND ORDER MINIMALITY CRITERION FOR CAVITIES IN ELASTIC BODIES

被引:11
作者
Capriani, Giuseppe Maria [1 ]
Julin, Vesa [1 ]
Pisante, Giovanni [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Cacciopoli, I-80126 Naples, Italy
[2] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
关键词
calculus of variations; second order minimality conditions; free discontinuity problems; STRAINED CRYSTALLINE FILMS; SURFACE-DIFFUSION; ENERGY; INSTABILITY; EVOLUTION; MODEL;
D O I
10.1137/120872152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a functional which models an elastic body with a cavity. We show that if a critical point has positive second variation, then it is a strict local minimizer. We also provide a quantitative estimate.
引用
收藏
页码:1952 / 1991
页数:40
相关论文
共 20 条
[1]  
Acerbi E, COMM MATH P IN PRESS
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]  
Ambrosio L., 2004, OXFORD LECT SER MATH, V25
[4]   INTERFACE MORPHOLOGY DEVELOPMENT DURING STRESS-CORROSION CRACKING .1. VIA SURFACE DIFFUSION [J].
ASARO, RJ ;
TILLER, WA .
METALLURGICAL TRANSACTIONS, 1972, 3 (07) :1789-&
[5]   Computing the equilibrium configuration of epitaxially strained crystalline films [J].
Bonnetier, E ;
Chambolle, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1093-1121
[6]  
Bonnetier E, 1999, RAIRO-MATH MODEL NUM, V33, P573
[7]   A second order minimality condition for the Mumford-Shah functional [J].
Cagnetti, F. ;
Mora, M. G. ;
Morini, M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (01) :37-74
[8]   A Selection Principle for the Sharp Quantitative Isoperimetric Inequality [J].
Cicalese, Marco ;
Leonardi, Gian Paolo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (02) :617-643
[9]   Nonlinear effects of the stress driven rearrangement instability of solid free surfaces [J].
Colin, J ;
Grilhé, J .
JOURNAL OF ELASTICITY, 2004, 77 (03) :177-185
[10]   About stability of equilibrium shapes [J].
Dambrine, M ;
Pierre, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (04) :811-834