A powerful hybrid clustering method based on modified stem cells and Fuzzy C-means algorithms

被引:25
作者
Taherdangkoo, Mohammad [1 ]
Bagheri, Mohammad Hadi [2 ,3 ]
机构
[1] Taba Med Imaging Ctr, Shiraz 7134753151, Iran
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Ctr Evidence Based Imaging,Dept Radiol, Brookline, MA USA
[3] Shiraz Univ Med Sci, Med Imaging Res Ctr, Shiraz, Iran
关键词
Data clustering; Stem cells algorithm (SCA); Fuzzy C-means algorithm; SC-FCM algorithm; PARTICLE SWARM OPTIMIZATION; AUTOMATIC EVOLUTION; CLASSIFICATION;
D O I
10.1016/j.engappai.2013.03.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the simple techniques for Data Clustering is based on Fuzzy C-means (FCM) clustering which describes the belongingness of each data to a cluster by a fuzzy membership function instead of a crisp value. However, the results of fuzzy clustering depend highly on the initial state selection and there is also a high risk for getting the best results when the datasets are large. In this paper, we present a hybrid algorithm based on FCM and modified stem cells algorithms, we called it SC-FCM algorithm, for optimum clustering of a dataset into K clusters. The experimental results obtained by using the new algorithm on different well-known datasets compared with those obtained by K-means algorithm, FCM, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) Algorithm demonstrate the better performance of the new algorithm. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1493 / 1502
页数:10
相关论文
共 21 条
[1]  
Aitkin M, 2011, STAT SOC BEHAV SC, P1, DOI 10.1007/978-1-4419-9937-5
[2]   Genetic clustering for automatic evolution of clusters and application to image classification [J].
Bandyopadhyay, S ;
Maulik, U .
PATTERN RECOGNITION, 2002, 35 (06) :1197-1208
[3]   A point symmetry-based clustering technique for automatic evolution of clusters [J].
Bandyopadhyay, Sanghamitra ;
Saha, Sriparna .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (11) :1441-1457
[4]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[5]   Power Quality Disturbance Classification Using Fuzzy C-Means Algorithm and Adaptive Particle Swarm Optimization [J].
Biswal, Birendra ;
Dash, P. K. ;
Panigrahi, B. K. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (01) :212-220
[6]  
Blake C. L., 1998, Uci repository of machine learning databases
[7]   Biclustering in data mining [J].
Busygin, Stanislav ;
Prokopyev, Oleg ;
Pardalos, Panos M. .
COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (09) :2964-2987
[8]   Automatic clustering using an improved differential evolution algorithm [J].
Das, Swagatam ;
Abraham, Ajith ;
Konar, Amit .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2008, 38 (01) :218-237
[9]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227
[10]   A genetic fuzzy k-Modes algorithm for clustering categorical data [J].
Gan, G. ;
Wu, J. ;
Yang, Z. .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) :1615-1620