Static Correlation Visualization for Large Time-Varying Volume Data

被引:0
作者
Chen, Cheng-Kai [1 ]
Wang, Chaoli [2 ]
Ma, Kwan-Liu [1 ]
Wittenberg, Andrew T. [3 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Michigan Tech, Houghton, MI 49931 USA
[3] NOAA, Silver Spring, MD 20910 USA
来源
IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011 | 2011年
基金
美国国家科学基金会;
关键词
COUPLED CLIMATE MODELS; MULTIVARIATE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding correlations among data is one of the most essential tasks in many scientific investigations and discoveries. This paper addresses the issue of creating a static volume classification that summarizes the correlation connection in time-varying multivariate data sets. In practice, computing all temporal and spatial correlations for large 3D time-varying multivariate data sets is prohibitively expensive. We present a sampling-based approach to classifying correlation patterns. Our sampling scheme consists of three steps: selecting important samples from the volume, prioritizing distance computation for sample pairs, and approximating volume-based correlation with sample-based correlation. We classify sample voxels to produce static visualization that succinctly summarize the connection among all correlation volumes with respect to various reference locations. We also investigate the error introduced by each step of our sampling scheme in terms of classification accuracy. Domain scientists participated in this work and helped us select samples and evaluate results. Our approach is generally applicable to the analysis of other scientific data where correlation study is relevant.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 21 条
  • [1] Bennett J., 2009, P IEEE CLUST COMP
  • [2] Blaas J., 2007, EuroVis, P123
  • [3] GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics
    Delworth, TL
    Broccoli, AJ
    Rosati, A
    Stouffer, RJ
    Balaji, V
    Beesley, JA
    Cooke, WF
    Dixon, KW
    Dunne, J
    Dunne, KA
    Durachta, JW
    Findell, KL
    Ginoux, P
    Gnanadesikan, A
    Gordon, CT
    Griffies, SM
    Gudgel, R
    Harrison, MJ
    Held, IM
    Hemler, RS
    Horowitz, LW
    Klein, SA
    Knutson, TR
    Kushner, PJ
    Langenhorst, AR
    Lee, HC
    Lin, SJ
    Lu, J
    Malyshev, SL
    Milly, PCD
    Ramaswamy, V
    Russell, J
    Schwarzkopf, MD
    Shevliakova, E
    Sirutis, JJ
    Spelman, MJ
    Stern, WF
    Winton, M
    Wittenberg, AT
    Wyman, B
    Zeng, F
    Zhang, R
    [J]. JOURNAL OF CLIMATE, 2006, 19 (05) : 643 - 674
  • [4] Visualizing Temporal Patterns in Large Multivariate Data using Textual Pattern Matching
    Glatter, Markus
    Huang, Jian
    Ahern, Sean
    Daniel, Jamison
    Lu, Aidong
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) : 1467 - 1474
  • [5] Scalable data servers for large multivariate volume visualization
    Glatter, Markus
    Mollenhour, Colin
    Huang, Jian
    Gao, Jinzhu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (05) : 1291 - 1298
  • [6] Gosink L. J., 2007, VISUALIZATION COMPUT, V13, P2007
  • [7] Gu Y, 2010, LECT NOTES COMPUT SC, V6455, P437
  • [8] Hoffman F. M., 2008, P ENV MOD SOFTW
  • [9] Brushing of Attribute Clouds for the Visualization of Multivariate Data
    Janicke, Heike
    Bottinger, Michael
    Scheuermann, Gerik
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) : 1459 - 1466
  • [10] A local search approximation algorithm for k-means clustering
    Kanungo, T
    Mount, DM
    Netanyahu, NS
    Piatko, CD
    Silverman, R
    Wu, AY
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 28 (2-3): : 89 - 112