A COHEN TYPE INEQUALITY FOR GEGENBAUER-SOBOLEV EXPANSIONS

被引:3
作者
Fejzullahu, Bujar Xh. [1 ]
Marcellan, Francisco [1 ]
机构
[1] Univ Carlos III Madrid, Escuela Politecn Super, Dept Matemat, Leganes 28911, Spain
关键词
Gegenbauer-Sobolev polynomials; Orthogonal expansions; Cohen type inequality; POLYNOMIALS; RESPECT;
D O I
10.1216/RMJ-2013-43-1-135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Sobolev-type inner product < f, g > = integral(1)(-1) f(x) g(x) d mu(x) + M[f(1) g(1) + f(-1) g(-1)] + N[f' (1)g' (1) + f' (-1)g' (-1)], where d mu(x) = Gamma(2 alpha + 2)/2(2 alpha) + (1)Gamma(2) (alpha + 1) (1 - x(2))(alpha) dx, M, N >= 0, alpha > - 1. In this paper we prove a Cohen type inequality for the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1999, ENCY MATH APPL
[2]  
[Anonymous], 1999, FOURIER SERIES ORTHO
[3]   ON ORTHOGONAL POLYNOMIALS WITH RESPECT TO AN INNER PRODUCT INVOLVING DERIVATIVES - ZEROS AND RECURRENCE RELATIONS [J].
BAVINCK, H ;
MEIJER, HG .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (01) :7-14
[4]  
Bavinck H., 1989, APPL ANAL, V33, P103, DOI 10.1080/00036818908839864
[5]   A COHEN TYPE INEQUALITY FOR ULTRASPHERICAL SERIES [J].
DRESELER, B ;
SOARDI, PM .
ARCHIV DER MATHEMATIK, 1982, 38 (03) :243-247
[6]   A COHEN-TYPE INEQUALITY FOR JACOBI-EXPANSIONS AND DIVERGENCE OF FOURIER-SERIES ON COMPACT SYMMETRIC-SPACES [J].
DRESELER, B ;
SOARDI, PM .
JOURNAL OF APPROXIMATION THEORY, 1982, 35 (03) :214-221
[7]  
Fejzullahu BX., 2009, Commun. Anal. Theory Contin. Fract, V16, P1
[9]   Estimates for polynomials orthogonal with respect to some Gegenbauer-Sobolev type inner product [J].
Moreno, AF ;
Marcellán, F ;
Osilenker, BP .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (04) :401-419
[10]   GENERALIZED JACOBI WEIGHTS, CHRISTOFFEL FUNCTIONS, AND JACOBI-POLYNOMIALS [J].
NEVAI, P ;
ERDELYI, T ;
MAGNUS, AP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (02) :602-614