A low-cost cementite (Fe3C) nanocrystal@ N-doped graphitic carbon electrocatalyst for efficient oxygen reduction

被引:23
作者
Wu, Tianxing [1 ]
Zhang, Haimin [1 ]
Zhang, Xian [1 ]
Zhang, Yunxia [1 ]
Zhao, Huijun [1 ,2 ]
Wang, Guozhong [1 ]
机构
[1] Chinese Acad Sci, Key Lab Mat Phys, Ctr Environm & Energy Nanomat, Anhui Key Lab Nanomat & Nanostruct,Inst Solid Sta, Hefei 230031, Peoples R China
[2] Griffith Univ, Ctr Clean Environm & Energy, Nathan, Qld 4222, Australia
关键词
CATALYSTS; PERFORMANCE; NANOTUBES; GRAPHENE; CARBIDE; SULFUR;
D O I
10.1039/c5cp04252f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac) 3) at 900 degrees C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core-shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 degrees C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m(2) g(-1)), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites.
引用
收藏
页码:27527 / 27533
页数:7
相关论文
共 31 条
[1]   Sp2 C-Dominant N-Doped Carbon Sub-micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen-Reduction Catalysts [J].
Ai, Kelong ;
Liu, Yanlan ;
Ruan, Changping ;
Lu, Lehui ;
Lu, Gaoqing .
ADVANCED MATERIALS, 2013, 25 (07) :998-1003
[2]  
Bard A.J., 1980, ELECTROCHEMICAL METH
[3]   Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes [J].
Chen, Kuiyong ;
Huang, Xiaobin ;
Wan, Chaoying ;
Liu, Hong .
CHEMICAL COMMUNICATIONS, 2015, 51 (37) :7891-7894
[4]   Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction [J].
Chung, Hoon T. ;
Won, Jong H. ;
Zelenay, Piotr .
NATURE COMMUNICATIONS, 2013, 4
[5]   Metal-Free Catalysts for Oxygen Reduction Reaction [J].
Dai, Liming ;
Xue, Yuhua ;
Qu, Liangti ;
Choi, Hyun-Jung ;
Baek, Jong-Beom .
CHEMICAL REVIEWS, 2015, 115 (11) :4823-4892
[6]  
Davis R., 1967, ELECTROCHIM ACTA
[7]   Solution-Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR) [J].
Gao, Min-Rui ;
Jiang, Jun ;
Yu, Shu-Hong .
SMALL, 2012, 8 (01) :13-27
[8]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[9]   Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction [J].
Lai, Linfei ;
Potts, Jeffrey R. ;
Zhan, Da ;
Wang, Liang ;
Poh, Chee Kok ;
Tang, Chunhua ;
Gong, Hao ;
Shen, Zexiang ;
Lin, Jianyi ;
Ruoff, Rodney S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) :7936-7942
[10]   Mesoporous Fe/C and Core-Shell Fe-Fe3C@C composites as efficient microwave absorbents [J].
Li, Guomin ;
Wang, Liancheng ;
Li, Wanxi ;
Xu, Yao .
MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 211 :97-104