CONCENTRATION OF SOLUTIONS FOR THE MEAN CURVATURE PROBLEM

被引:2
作者
Abdelhedi, Wael [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax 3018, Tunisia
关键词
Boundary mean curvature; critical Sobolev exponent; critical points at infinity; CONFORMAL METRICS; BOUNDARY; BALL; B-4;
D O I
10.1016/S0252-9602(13)60026-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of conformal metrics equivalent to the Euclidean metric, with zero scalar curvature and prescribed mean curvature on the boundary of the ball B-n, n >= 4. By variational methods, we prove the existence of two peak solutions that concentrate around a strict local maximum points of the mean curvature under certain conditions.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 14 条
[1]   A Morse theoretical approach for the boundary mean curvature problem on B4 [J].
Abdelhedi, Wael ;
Chtioui, Hichem ;
Ahmedou, Mohameden Ould .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1307-1341
[2]   The prescribed boundary mean curvature problem on the standard n-dimensional ball [J].
Abdelhedi, Wael ;
Chtioui, Hichem .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :668-686
[3]   PRESCRIBING MEAN CURVATURE ON Bn [J].
Abdelhedi, Wael ;
Chtioui, Hichem .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (09) :1157-1187
[4]  
BAHRI A, 1995, CALC VAR PARTIAL DIF, V3, P67, DOI 10.1007/s005260050007
[5]  
Bahri A., 1989, Pitman Res. Notes Math. Ser., V182
[6]  
Chang SYA, 1998, MATH ANN, V310, P473
[7]   NONLINEAR NEUMANN PROBLEMS ON RIEMANNIAN-MANIFOLDS [J].
CHERRIER, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 57 (02) :154-206
[8]   The prescribed boundary mean curvature problem on B4 [J].
Djadli, Z ;
Malchiodi, A ;
Ahmedou, MO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :373-398
[9]   Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary [J].
Escobar, JF ;
Garcia, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (01) :71-152
[10]   Conformal metrics with prescribed mean curvature on the boundary [J].
Escobar, JF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (06) :559-592