An Optimized Symmetric 8-Step Semi-Embedded Predictor-Corrector Method for IVPs with Oscillating Solutions

被引:145
作者
Panopoulos, G. A. [1 ]
Simos, T. E. [1 ,2 ]
机构
[1] Univ Peloponnese, Sci Computat Lab, Dept Comp Sci & Technol, Fac Sci & Technol, GR-22100 Tripolis, Greece
[2] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 01期
关键词
Orbital problems; phase-lag; initial value problems; oscillating solution; symmetric; multistep; predictor-corrector; semi-embedded; TRIGONOMETRICALLY-FITTED METHODS; RADIAL SCHRODINGER-EQUATION; NUMERICAL-SOLUTION; MULTISTEP METHODS; 2ND-ORDER IVPS; PHASE-LAG; ORDER;
D O I
10.12785/amis/070107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a new optimized symmetric eight-step semi-embedded predictor-corrector method (SEPCM) with minimal phase-lag. The method is based on the symmetric multistep method of Quinlan-Tremaine [1], with eight steps and eighth algebraic order and is constructed to solve IVPs with oscillating solutions. We compare the new method to some recently constructed optimized methods and other methods from the literature. We measure the efficiency of the methods and conclude that the new method with minimal phase-lag is the most efficient of all the compared methods and for all the problems solved.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 28 条
[1]  
Anastassi Z.A., 2012, J COMPUTATIONAL APPL, V236
[2]   An optimized Runge-Kutta method for the solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :1-9
[3]  
[Anonymous], ASTRON J
[4]  
[Anonymous], SPECIALIST PERIODICA
[5]   HIGH-ORDER P-STABLE MULTISTEP METHODS [J].
FRANCO, JM ;
PALACIOS, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (01) :1-10
[6]   Newton-Cotes formulae for long-time integration [J].
Kalogiratou, Z ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :75-82
[7]   Symplectic integrators for the numerical solution of the Schrodinger equation [J].
Kalogiratou, Z ;
Monovasilis, T ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :83-92
[8]   A generator of hybrid symmetric four-step methods for the numerical solution of the Schrodinger equation [J].
Konguetsof, A ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :93-106
[9]  
Lambert J.D, 1976, J I MATH APPL, V18
[10]  
Lambert J.D., 1991, NUMERICAL METHODS OR, P104