Global nonlinear stability in porous convection with a thermal non-equilibrium model

被引:102
作者
Straughan, B [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2066期
关键词
thermal non-equilibrium model; global stability; nonlinear stability; porous convection; rotating convection;
D O I
10.1098/rspa.2005.1555
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that the global nonlinear stability, threshold for convection with a thermal nonequilibrium model is exactly the same as the linear instability boundary. This result is shown to hold for the porous medium equations of Darcy, Forchheimer or Brinkman. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The equivalence of the linear instability and nonlinear stability boundaries is also demonstrated for thermal convection in a non-equilibrium model with the Darcy law, when the layer rotates with a constant angular velocity about an axis in the same direction as gravity.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 35 条
  • [1] [Anonymous], APPL MATH SCI SERIES
  • [2] Onset of Darcy-Benard convection using a thermal non-equilibrium model
    Banu, N
    Rees, DAS
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (11) : 2221 - 2228
  • [3] Forced convection in high porosity metal foams
    Calmidi, VV
    Mahajan, RL
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03): : 557 - 565
  • [4] Chandrasekhar S, 1981, HYDRODYNAMIC HYDROMA
  • [5] Dincov DD, 2004, J FOOD ENG, V65, P403, DOI [10.1016/j.jfoodeng.2004.02.011, 10.1016/j.jfoodeng.2004.02.11]
  • [6] Continuous dependence and decay for the Forchheimer equations
    Franchi, F
    Straughan, B
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2040): : 3195 - 3202
  • [7] EXCHANGE OF STABILITIES, SYMMETRY, AND NONLINEAR STABILITY
    GALDI, GP
    STRAUGHAN, B
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) : 211 - 228
  • [8] Forced convective drying of willow chips
    Gigler, JK
    van Loon, WKP
    Vissers, MM
    Bot, GPA
    [J]. BIOMASS & BIOENERGY, 2000, 19 (04) : 259 - 270
  • [9] Natural wind drying of willow stems
    Gigler, JK
    van Loon, WKP
    van den Berg, JV
    Sonneveld, C
    Meerdink, G
    [J]. BIOMASS & BIOENERGY, 2000, 19 (03) : 153 - 163
  • [10] COMPUTATIONAL-EFFICIENCY AND APPROXIMATE INERTIAL MANIFOLDS FOR A BENARD CONVECTION SYSTEM
    GRAHAM, MD
    STEEN, PH
    TITI, ES
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 153 - 167