K-STABILITY FOR FANO MANIFOLDS WITH TORUS ACTION OF COMPLEXITY 1

被引:25
|
作者
Ilten, Nathan [1 ]
Suss, Hendrik [2 ]
机构
[1] Simor Fraser Univ, Dept Math, Burnaby, BC, Canada
[2] Univ Manchester, Sch Math, Manchester, Lancs, England
关键词
KAHLER-EINSTEIN METRICS; T-VARIETIES; RICCI SOLITONS; INVARIANT; SINGULARITIES; DIVISORS; LIMITS; 2-PI;
D O I
10.1215/00127094-3714864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Fano manifolds admitting an algebraic torus action with general orbit of codimension 1. Using a recent result of Datar and Szekelyhidi, we effectively determine the existence of Kahler-Ricci solitons for those manifolds via the notion of equivariant K-stability. This allows us to give new examples of Kahler-Einstein Fano threefolds and Fano threefolds admitting a nontrivial Kahler-Ricci soliton.
引用
收藏
页码:177 / 204
页数:28
相关论文
共 50 条