A general convergence theorem for multiple-set split feasibility problem in Hilbert spaces

被引:0
作者
Khan, Abdul Rahim [1 ]
Abbas, Mujahid [2 ]
Shehu, Yekini [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[3] Univ Nigeria, Dept Math, Nsukka, Nigeria
关键词
Total asymptotically strict pseudocontractive mapping; single-valued (multi-valued) quasi-nonexpansive mapping; split common fixed-point problems; strong convergence; Hilbert space; ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish strong convergence result of split feasibility problem for a family of quasi-nonexpansive multi-valued mappings and a total asymptotically strict pseudo-contractive mapping in infinite dimensional Hilbert spaces.
引用
收藏
页码:349 / 357
页数:9
相关论文
共 18 条
[1]   Strongly convergent approximations to fixed points of total asymptotically nonexpansive mappings [J].
Alber, Yakov ;
Espinola, Rafa ;
Lorenzo, Pepa .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (06) :1005-1022
[2]  
[Anonymous], 1994, Numer. Algor., DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
[4]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[5]   An extragradient method for solving split feasibility and fixed point problems [J].
Ceng, L-C ;
Ansari, Q. H. ;
Yao, J-C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) :633-642
[6]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[7]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[8]   Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [J].
Censor, Yair ;
Motova, Avi ;
Segal, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1244-1256
[9]   Split feasibility problem for quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mapping [J].
Chang, S. S. ;
Lee, H. W. Joseph ;
Chan, C. K. ;
Wang, L. ;
Qin, L. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (20) :10416-10424
[10]   Modified Block Iterative Algorithm for Solving Convex Feasibility Problems in Banach Spaces [J].
Chang, Shih-sen ;
Kim, Jong Kyu ;
Wang, Xiong Rui .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,