Nonlinear waves of the Hirota and the Maxwell-Bloch equations in nonlinear optics

被引:13
|
作者
Li Chuan-Zhong [1 ]
He Jing-Song [1 ]
Porseizan, K. [2 ,3 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
[3] Univ Jena, Inst Condensed Matter Theory & Solid State Opt, D-07743 Jena, Germany
基金
中国国家自然科学基金;
关键词
Hirota and Maxwell-Bloch equations; nonlinear optics; rogue wave; SOLITONS; PROPAGATION; GUIDE;
D O I
10.1088/1674-1056/22/4/044208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, considering the Hirota and the Maxwell-Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system, we construct the Darboux transformation of this system through a linear eigenvalue problem. Using this Daurboux transformation, we generate multi-soliton, positon, and breather solutions (both bright and dark breathers) of the H-MB equations. Finally, we also construct the rogue wave solutions of the above system.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nonlinear waves of the Hirota and the Maxwell Bloch equations in nonlinear optics
    李传忠
    贺劲松
    K. Porseizan
    Chinese Physics B, 2013, 22 (04) : 292 - 301
  • [2] Rogue waves of the Hirota and the Maxwell-Bloch equations
    Li, Chuanzhong
    He, Jingsong
    Porseizan, K.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [3] Numerical methods for the bidimensional Maxwell-Bloch equations in nonlinear crystals
    Bourgeade, A
    Saut, O
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) : 823 - 843
  • [4] MULTI-OPTICAL ROGUE WAVES OF THE MAXWELL-BLOCH EQUATIONS
    Xu, Shuwei
    Porsezian, K.
    He, Jingsong
    Cheng, Yi
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (01) : 316 - 340
  • [5] Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell-Bloch equation
    Li ChuanZhong
    He JingSong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (05) : 898 - 907
  • [6] Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrodinger Maxwell-Bloch system
    Wang, Lei
    Li, Xiao
    Zhang, Lu Lu
    Li, Min
    Qi, Feng-Hua
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (09)
  • [7] Inhomogeneous reduced Maxwell-Bloch system in nonlinear optics: Darboux-transformation and solitonic issues
    Shen Y.
    Tian B.
    Zhou T.-Y.
    Gao X.-T.
    Optik, 2023, 285
  • [8] Nonlinear tunneling of nonautonomous optical solitons in combined nonlinear Schrodinger and Maxwell-Bloch systems
    Rajan, M. S. Mani
    Mahalingam, A.
    Uthayakumar, A.
    JOURNAL OF OPTICS, 2012, 14 (10)
  • [9] Soliton solutions for the reduced Maxwell-Bloch system in nonlinear optics via the N-fold Darboux transformation
    Guo, Rui
    Tian, Bo
    Wang, Lei
    NONLINEAR DYNAMICS, 2012, 69 (04) : 2009 - 2020
  • [10] Soliton solutions of coupled Maxwell-Bloch equations
    Chakravarty, S.
    PHYSICS LETTERS A, 2016, 380 (11-12) : 1141 - 1150