Systematic Comparison of C3 and C4 Plants Based on Metabolic Network Analysis

被引:62
|
作者
Wang, Chuanli [1 ]
Guo, Longyun [1 ]
Li, Yixue [1 ,2 ]
Wang, Zhuo [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Bioinformat & Biostat, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Shanghai 200031, Peoples R China
来源
BMC SYSTEMS BIOLOGY | 2012年 / 6卷
基金
中国国家自然科学基金;
关键词
FLUX BALANCE ANALYSIS; PHOTOSYNTHETIC PATHWAY; GENOME; GROWTH; MODEL; NITROGEN; BIOLOGY; RICE; ARABIDOPSIS; RUBISCO;
D O I
10.1186/1752-0509-6-S2-S9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The C4 photosynthetic cycle supercharges photosynthesis by concentrating CO2 around ribulose-1,5-bisphosphate carboxylase and significantly reduces the oxygenation reaction. Therefore engineering C4 feature into C3 plants has been suggested as a feasible way to increase photosynthesis and yield of C3 plants, such as rice, wheat, and potato. To identify the possible transition from C3 to C4 plants, the systematic comparison of C3 and C4 metabolism is necessary. Results: We compared C3 and C4 metabolic networks using the improved constraint-based models for Arabidopsis and maize. By graph theory, we found the C3 network exhibit more dense topology structure than C4. The simulation of enzyme knockouts demonstrated that both C3 and C4 networks are very robust, especially when optimizing CO2 fixation. Moreover, C4 plant has better robustness no matter the objective function is biomass synthesis or CO2 fixation. In addition, all the essential reactions in C3 network are also essential for C4, while there are some other reactions specifically essential for C4, which validated that the basic metabolism of C4 plant is similar to C3, but C4 is more complex. We also identified more correlated reaction sets in C4, and demonstrated C4 plants have better modularity with complex mechanism coordinates the reactions and pathways than that of C3 plants. We also found the increase of both biomass production and CO2 fixation with light intensity and CO2 concentration in C4 is faster than that in C3, which reflected more efficient use of light and CO2 in C4 plant. Finally, we explored the contribution of different C4 subtypes to biomass production by setting specific constraints. Conclusions: All results are consistent with the actual situation, which indicate that Flux Balance Analysis is a powerful method to study plant metabolism at systems level. We demonstrated that in contrast to C3, C4 plants have less dense topology, higher robustness, better modularity, and higher CO2 and radiation use efficiency. In addition, preliminary analysis indicated that the rate of CO2 fixation and biomass production in PCK subtype are superior to NADP-ME and NAD-ME subtypes under enough supply of water and nitrogen.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A COMPARISON OF DARK RESPIRATION BETWEEN C3 AND C4 PLANTS
    BYRD, GT
    SAGE, RF
    BROWN, RH
    PLANT PHYSIOLOGY, 1992, 100 (01) : 191 - 198
  • [2] Oxygen requirement and inhibition of C4 photosynthesis -: An analysis of C4 plants deficient in the C3 and C4 cycles
    Maroco, JP
    Ku, MSB
    Lea, PJ
    Dever, LV
    Leegood, RC
    Furbank, RT
    Edwards, GE
    PLANT PHYSIOLOGY, 1998, 116 (02) : 823 - 832
  • [3] PEP CARBOXYLASES IN C3 AND C4 PLANTS
    TING, IP
    OSMOND, CB
    PLANT PHYSIOLOGY, 1972, 49 : 58 - &
  • [4] THE PRODUCTIVITY OF C3 AND C4 PLANTS - A REASSESSMENT
    SNAYDON, RW
    FUNCTIONAL ECOLOGY, 1991, 5 (03) : 321 - 330
  • [5] THE REGULATION OF PHOSPHORIBULOKINASE IN C3 AND C4 PLANTS
    Ruffer-Turner, M. E.
    Bradbeer, J. W.
    PLANT PHYSIOLOGY, 1984, 75 : 52 - 52
  • [6] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Su, Peixi
    Yan, Qiaodi
    Xie, Tingting
    Zhou, Zijuan
    Gao, Song
    ACTA PHYSIOLOGIAE PLANTARUM, 2012, 34 (06) : 2057 - 2068
  • [7] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Peixi Su
    Qiaodi Yan
    Tingting Xie
    Zijuan Zhou
    Song Gao
    Acta Physiologiae Plantarum, 2012, 34 : 2057 - 2068
  • [8] A study on the prospect of converting C3 plants into C4 plants
    Talukder, Pratik
    Sinha, Baishakhi
    Biswas, Sayantan
    Ghosh, Anushka
    Banerjee, Arpan
    Paul, Subhobrata
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2024, 58
  • [9] Comparative Analysis of C3 and C4 Plants using Constraint-based Model
    Wang, Chuanli
    Guo, Longyun
    Wang, Zhuo
    2012 IEEE FOURTH INTERNATIONAL SYMPOSIUM ON PLANT GROWTH MODELING, SIMULATION, VISUALIZATION AND APPLICATIONS (PMA), 2012, : 418 - 425
  • [10] 28 ≤ R(C4, C4, C3, C3) ≤ 36
    Xu Xiaodong
    Radziszowski, Stanislaw P.
    UTILITAS MATHEMATICA, 2009, 79 : 253 - 257