Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows

被引:41
作者
Zhou, Yong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
D O I
10.1088/0951-7715/21/9/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive a decay rate of the L(2)-norm of the solution to the 2D dissipative quasi-geostrophic flows compared with the corresponding linear equation. Here, we establish a new, concise and direct method, which only relies on a rough decay estimate of parallel to del theta(t)parallel to(2)(L) and avoids using the Fourier splitting technique completely.
引用
收藏
页码:2061 / 2071
页数:11
相关论文
共 21 条
[1]  
ABIDI H, 2007, MATHAP0702215
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]  
CAFFARELLI L, 2006, MATHAP0608447
[4]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[5]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[6]  
CONSTANTIN P., 1988, CHICAGO LECT MATH
[7]  
Dong HJ, 2008, DISCRETE CONT DYN-A, V21, P1095
[8]   Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation [J].
Ju, N .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :627-642
[9]   Dissipative 2D quasi-geostrophic equation: Local well-posedness, global regularity and similarity solutions [J].
Ju, Ning .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (01) :187-206
[10]   Global well-posedness for the critical 2D dissipative quasi-geostrophic equation [J].
Kiselev, A. ;
Nazarov, F. ;
Volberg, A. .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :445-453