Robust Estimation of Kinetic Parameters in Dynamic PET Imaging

被引:0
|
作者
Gao, Fei [1 ]
Liu, Huafeng [1 ]
Shi, Pengcheng [1 ]
机构
[1] Rochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT I | 2011年 / 6891卷
关键词
DIRECT RECONSTRUCTION; IMAGES; MAPS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic PET imaging provides important information for biological research, clinical diagnosis and pharmacokinetic analysis through kinetic modeling and data-driven parameter estimation. Kinetic parameters quantitatively describe dynamic material exchange and metabolism of radiotracers in plasma and tissues. While many efforts have been devoted to estimate kinetic parameters from dynamic PET, the poor statistical properties of the measurement data in low count dynamic acquisition and the uncertainties in estimating the arterial input function have limited the accuracy and reliability of the kinetic parameter estimation. Additionally, the quantitative analysis of individual kinetic parameters is not yet implemented. In this paper, we present a robust kinetic parameter estimation framework which is robust to both the poor statistical properties of measurement data in dynamic PET and the uncertainties in estimated arterial input function, and is able to analyze every single kinetic parameter quantitatively. The strategy is optimized with robust H-infinity estimation under minimax criterion. Experiments are conducted on Monte Carlo sirnulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential.
引用
收藏
页码:492 / 499
页数:8
相关论文
共 50 条
  • [41] Automatic TAC extraction from dynamic cardiac PET imaging using iterative correlation from a population template
    Mateos-Perez, Jose M.
    Desco, Manuel
    Dae, Michael W.
    Garcia-Villalba, Carmen
    Cusso, Lorena
    Vaquero, Juan J.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 111 (02) : 308 - 314
  • [42] Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm
    Yi, Jianbing
    Yang, Xuan
    Chen, Guoliang
    Li, Yan-Ran
    MEDICAL PHYSICS, 2015, 42 (10) : 5616 - 5632
  • [43] Relative Patlak plot for dynamic PET parametric imaging without the need for early-time input function
    Zuo, Yang
    Qi, Jinyi
    Wang, Guobao
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (16)
  • [44] An introduction to PET-CT imaging
    Kapoor, V
    McCook, BM
    Torok, FS
    RADIOGRAPHICS, 2004, 24 (02) : 523 - 543
  • [45] Assessment of Lesion Detectability in Dynamic Whole-Body PET Imaging Using Compartmental and Patlak Parametric Mapping
    Zaker, Neda
    Kotasidis, Fotis
    Garibotto, Valentina
    Zaidi, Habib
    CLINICAL NUCLEAR MEDICINE, 2020, 45 (05) : E221 - E231
  • [46] Kinetic Curve Type Assessment for Classification of Breast Lesions Using Dynamic Contrast-Enhanced MR Imaging
    Yang, Shih-Neng
    Li, Fang-Jing
    Chen, Jun-Ming
    Zhang, Geoffrey
    Liao, Yen-Hsiu
    Huang, Tzung-Chi
    PLOS ONE, 2016, 11 (04):
  • [47] A physiology-based parametric imaging method for FDG-PET data
    Scussolini, Mara
    Garbarino, Sara
    Sambuceti, Gianmario
    Caviglia, Giacomo
    Piana, Michele
    INVERSE PROBLEMS, 2017, 33 (12)
  • [48] Attenuation Correction of PET/MR Imaging
    Chen, Yasheng
    An, Hongyu
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2017, 25 (02) : 245 - +
  • [49] Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI
    Guo, Yi
    Lingala, Sajan Goud
    Zhu, Yinghua
    Lebel, R. Marc
    Nayak, Krishna S.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (04) : 1566 - 1578
  • [50] ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING
    Frontera-Pons, J.
    Veganzones, M. A.
    Velasco-Forero, S.
    Pascal, F.
    Ovarlez, J. P.
    Chanussot, J.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,