Maximum caliber inference and the stochastic Ising model

被引:13
作者
Cafaro, Carlo [1 ]
Ali, Sean Alan [2 ]
机构
[1] SUNY Polytech Inst, Albany, NY 12203 USA
[2] Albany Coll Pharm & Hlth Sci, Albany, NY 12208 USA
来源
PHYSICAL REVIEW E | 2016年 / 94卷 / 05期
关键词
TIME-DEPENDENT STATISTICS; INFORMATION GEOMETRY; ENTROPY PRODUCTION; IMAGE-RECONSTRUCTION; ELECTRON-DENSITY; DECAY; FOUNDATIONS; PRINCIPLES; ALGORITHM; MANIFOLDS;
D O I
10.1103/PhysRevE.94.052145
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the maximum caliber variational principle as an inference algorithm used to predict dynamical properties of complex nonequilibrium, stationary, statistical systems in the presence of incomplete information. Specifically, we maximize the path entropy over discrete time step trajectories subject to normalization, stationarity, and detailed balance constraints together with a path-dependent dynamical information constraint reflecting a given average global behavior of the complex system. A general expression for the transition probability values associated with the stationary random Markov processes describing the nonequilibrium stationary system is computed. By virtue of our analysis, we uncover that a convenient choice of the dynamical information constraint together with a perturbative asymptotic expansion with respect to its corresponding Lagrange multiplier of the general expression for the transition probability leads to a formal overlap with the well-known Glauber hyperbolic tangent rule for the transition probability for the stochastic Ising model in the limit of very high temperatures of the heat reservoir.
引用
收藏
页数:10
相关论文
共 64 条
[1]  
[Anonymous], 1967, Inzhenerno-Fizicheskii Zhurnal, DOI DOI 10.1007/BF00828961
[2]  
[Anonymous], 2005, A Guide to Monte Carlo Simulations in Statistical Physics
[3]  
[Anonymous], J ENG PHYS, DOI DOI 10.1007/BF00832348
[4]   High temperature expansions and dynamical systems [J].
Bricmont, J ;
Kupiainen, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) :703-732
[5]   MAXIMUM-ENTROPY CALCULATION OF THE ELECTRON-DENSITY AT 4-A RESOLUTION OF PF1 FILAMENTOUS BACTERIOPHAGE [J].
BRYAN, RK ;
BANSAL, M ;
FOLKHARD, W ;
NAVE, C ;
MARVIN, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (15) :4728-4731
[6]   Jacobi fields on statistical manifolds of negative curvature [J].
Cafaro, C. ;
Ali, S. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 234 (01) :70-80
[7]   Can chaotic quantum energy levels statistics be characterized using information geometry and inference methods? [J].
Cafaro, C. ;
Ali, S. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (27) :6876-6894
[8]   Information geometry, inference methods and chaotic energy levels statistics [J].
Cafaro, Carlo .
MODERN PHYSICS LETTERS B, 2008, 22 (20) :1879-1892
[9]   Thermodynamic aspects of information transfer in complex dynamical systems [J].
Cafaro, Carlo ;
Ali, Sean Alan ;
Giffin, Adom .
PHYSICAL REVIEW E, 2016, 93 (02)
[10]   Quantifying the complexity of geodesic paths on curved statistical manifolds through information geometric entropies and Jacobi fields [J].
Cafaro, Carlo ;
Mancini, Stefano .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) :607-618