BOUNDEDNESS AND COMPACTNESS OF THE HARDY TYPE OPERATOR WITH VARIABLE UPPER LIMIT IN WEIGHTED LEBESGUE SPACES

被引:1
作者
Abylayeva, Akbota Muhamediyarovna [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Saipayev Str 2, Astana 010008, Kazakhstan
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 03期
关键词
Inequalities; Hardy type inequalities; fractional integration operator; weighted estimate; boundedness; compactness;
D O I
10.7153/mia-2020-23-66
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < alpha < 1. The operator of the form K(alpha,phi)f(x) = integral(phi(x))(a) f(t)w(t)dt/(W(x) - W(t))((1-alpha)), x > 0, is considered, where the real weight functions v(x) and w(x) are locally integrable on I := (a, b), 0 <= a < b <= infinity and dW(x)/dx equivalent to w(x). In this paper we derive criteria for the operator K-alpha,K-phi, 0< alpha < 1, 0 < p; q < infinity, p > 1/alpha to be bounded and compact from the spaces L-p,L- w to the spaces L-q,L- v.
引用
收藏
页码:805 / 819
页数:15
相关论文
共 12 条
  • [1] ABYLAYEVA A.M., 2004, MATH J, V4, P5
  • [2] ABYLAYEVA A.M., 2016, THESIS
  • [3] ABYLAYEVA A.M., 2005, B LN GUMILYOV ENU, V46, P130
  • [4] Edmunds D. E., 2002, BOUNDED COMPACT INTE
  • [5] KANTAROVICH L.V., 1977, FUNCTIONAL ANAL, P741
  • [6] KRASNOSELSKII M. A., 1966, INTEGRALNYE OPERATOR, P500
  • [7] Kufner A., 2007, The Hardy inequality. About its history and some related results
  • [8] Kufner A., 2017, WEIGHTED INEQUALITIE, V2nd, DOI DOI 10.1142/10052
  • [9] A characterization of two weight norm inequalities for one-sided operators of fractional type
    Lorente, M
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (05): : 1010 - 1033
  • [10] Meskhi A., 1998, Georgian Math. J, V5, P565, DOI [DOI 10.1023/B:GEOR.0000008132.69276.CC, 10.1023/B:GEOR.0000008132.69276.cc]