Marginal Subspace Learning With Group Low-Rank for Unsupervised Domain Adaptation

被引:3
|
作者
Yang, Liran [1 ,2 ]
Zhou, Qinghua [3 ]
Lu, Bin [1 ,2 ]
机构
[1] North China Elect Power Univ, Dept Comp, Baoding 071003, Peoples R China
[2] Minist Educ, Engn Res Ctr Intelligent Comp Complex Energy Syst, Baoding 071003, Peoples R China
[3] Beijing Normal Univ, Sch Appl Math, Zhuhai 519085, Peoples R China
关键词
Group low-rank; marginal constraint; subspace learning; unsupervised domain adaptation; REGULARIZATION; KERNEL; FRAMEWORK;
D O I
10.1109/TNNLS.2022.3218554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation is intended to construct a reliable model for the unlabeled target samples using the well-labeled but differently distributed source samples. To tackle the domain shift issue, learning domain-invariant feature representations across domains is important, and most of the existing methods have concentrated on this goal. However, these methods rarely take into consideration the group discriminability of the feature representation, which is detrimental to the final recognition. Therefore, this article proposes a novel unsupervised domain adaptation method, named marginal subspace learning with group low-rank (MSL-GLR), to extract both domain-invariant and discriminative feature representations. Specifically, MSL-GLR uses the retargeting strategy to relax the regression matrix, such that the regression values would be forced to satisfy a margin maximization criterion for the requirement of correct classification. Moreover, MSL-GLR imposes a class-induced low-rank constraint, which enables the samples of each class to be located in their respective subspace. In this way, the distance between samples from the same class can be decreased and the discriminant ability of the projection is greatly improved. Furthermore, with the help of alternating direction method of multipliers (ADMM), an efficient algorithm is presented to solve the resulting optimization problem. Finally, the effectiveness of the proposed MSL-GLR is demonstrated by comprehensive evaluations on multiple domain adaptation benchmark datasets.
引用
收藏
页码:9122 / 9135
页数:14
相关论文
共 50 条
  • [1] Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation
    Yang, Liran
    Men, Min
    Xue, Yiming
    Zhong, Ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (3-4) : 3031 - 3047
  • [2] Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation
    Liran Yang
    Min Men
    Yiming Xue
    Ping Zhong
    Multimedia Tools and Applications, 2020, 79 : 3031 - 3047
  • [3] Guide Subspace Learning for Unsupervised Domain Adaptation
    Zhang, Lei
    Fu, Jingru
    Wang, Shanshan
    Zhang, David
    Dong, Zhaoyang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (09) : 3374 - 3388
  • [4] Discriminative low-rank projection for robust subspace learning
    Lai, Zhihui
    Bao, Jiaqi
    Kong, Heng
    Wan, Minghua
    Yang, Guowei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (10) : 2247 - 2260
  • [5] Joint discriminative subspace and distribution adaptation for unsupervised domain adaptation
    Gholenji, Elahe
    Tahmoresnezhad, Jafar
    APPLIED INTELLIGENCE, 2020, 50 (07) : 2050 - 2066
  • [6] Nonconvex and discriminative transfer subspace learning for unsupervised domain adaptation
    Liu, Yueying
    Luo, Tingjin
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (02)
  • [7] Symmetric low-rank preserving projections for subspace learning
    Chen, Jie
    Mao, Hua
    Zhang, Haixian
    Yi, Zhang
    NEUROCOMPUTING, 2018, 315 : 381 - 393
  • [8] Learning Robust and Discriminative Subspace With Low-Rank Constraints
    Li, Sheng
    Fu, Yun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (11) : 2160 - 2173
  • [9] Discriminative low-rank projection for robust subspace learning
    Zhihui Lai
    Jiaqi Bao
    Heng Kong
    Minghua Wan
    Guowei Yang
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 2247 - 2260
  • [10] Discriminative Low-Rank Subspace Learning with Nonconvex Penalty
    Xie, Kan
    Liu, Wei
    Lai, Yue
    Li, Weijun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (10)