Non-radiative relaxation of photoexcited chlorophylls: theoretical and experimental study

被引:66
作者
Bricker, William P. [1 ]
Shenai, Prathamesh M. [2 ]
Ghosh, Avishek [3 ]
Liu, Zhengtang [3 ]
Enriquez, Miriam Grace M. [3 ]
Lambrev, Petar H. [3 ,4 ]
Tan, Howe-Siang [3 ]
Lo, Cynthia S. [1 ]
Tretiak, Sergei [5 ,6 ]
Fernandez-Alberti, Sebastian [7 ]
Zhao, Yang [2 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] Nanyang Technol Univ, Div Mat Sci, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[4] Hungarian Acad Sci, Biol Res Ctr, H-6726 Szeged, Hungary
[5] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA
[7] Univ Nacl Quilmes, Bernal, Argentina
基金
新加坡国家研究基金会;
关键词
ULTRAFAST INTERNAL-CONVERSION; UNIDIRECTIONAL ENERGY-TRANSFER; MOLECULAR-DYNAMICS; NONADIABATIC COUPLINGS; VIBRATIONAL-RELAXATION; SEMIEMPIRICAL METHODS; ELECTRONIC COHERENCE; TIME; STATE; AM1;
D O I
10.1038/srep13625
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonradiative relaxation of high-energy excited states to the lowest excited state in chlorophylls marks the first step in the process of photosynthesis. We perform ultrafast transient absorption spectroscopy measurements, that reveal this internal conversion dynamics to be slightly slower in chlorophyll B than in chlorophyll A. Modeling this process with non-adiabatic excited state molecular dynamics simulations uncovers a critical role played by the different side groups in the two molecules in governing the intramolecular redistribution of excited state wavefunction, leading, in turn, to different time-scales. Even given smaller electron-vibrational couplings compared to common organic conjugated chromophores, these molecules are able to efficiently dissipate about 1 eV of electronic energy into heat on the timescale of around 200 fs. This is achieved via selective participation of specific atomic groups and complex global migration of the wavefunction from the outer to inner ring, which may have important implications for biological light-harvesting function.
引用
收藏
页数:16
相关论文
共 72 条
[1]  
[Anonymous], 2002, Molecular Mechanisms of Photosynthesis
[2]  
[Anonymous], 1976, USERS GUIDE DVERK SU
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   INTERNAL CONVERSION FROM UPPER ELECTRONIC STATES TO FIRST EXCITED SINGLET STATE OF BENZENE, TOLUENE, P-XYLENE, AND MESITYLENE [J].
BRAUN, CL ;
KATO, S ;
LIPSKY, S .
JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (07) :1645-&
[5]   Photosynthetic light harvesting by carotenoids: Detection of an intermediate excited state [J].
Cerullo, G ;
Polli, D ;
Lanzani, G ;
De Silvestri, S ;
Hashimoto, H ;
Cogdell, RJ .
SCIENCE, 2002, 298 (5602) :2395-2398
[6]   Dynamics of Light Harvesting in Photosynthesis [J].
Cheng, Yuan-Chung ;
Fleming, Graham R. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2009, 60 :241-262
[7]   Krylov-space algorithms for time-dependent Hartree-Fock and density functional computations [J].
Chernyak, V ;
Schulz, MF ;
Mukamel, S ;
Tretiak, S ;
Tsiper, EV .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (01) :36-43
[8]   Density-matrix representation of nonadiabatic couplings in time-dependent density functional (TDDFT) theories [J].
Chernyak, V ;
Mukamel, S .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (08) :3572-3579
[9]  
Croce R, 2014, NAT CHEM BIOL, V10, P492, DOI [10.1038/NCHEMBIO.1555, 10.1038/nchembio.1555]
[10]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909