Subaging in underparametrized deep neural networks

被引:1
作者
Herrera Segura, Carolina [1 ]
Montoya, Edison [2 ,4 ]
Tapias, Diego [3 ]
机构
[1] Univ Antioquia, Inst Fis, Medellin, Colombia
[2] BCFort, Medellin, Colombia
[3] Univ Gottingen, Inst Theoret Phys, Gottingen, Germany
[4] Univ Antioquia, Medellin, Colombia
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2022年 / 3卷 / 03期
关键词
subaging; deep neural networks; glassy dynamics; underparametrized; STATISTICAL-MECHANICS; REGIMES; ENERGY;
D O I
10.1088/2632-2153/ac8f1b
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a simple classification problem to show that the dynamics of finite-width Deep Neural Networks in the underparametrized regime gives rise to effects similar to those associated with glassy systems, namely a slow evolution of the loss function and aging. Remarkably, the aging is sublinear in the waiting time (subaging) and the power-law exponent characterizing it is robust to different architectures under the constraint of a constant total number of parameters. Our results are maintained in the more complex scenario of the MNIST database. We find that for this database there is a unique exponent ruling the subaging behavior in the whole phase.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Deep neural networks - a developmental perspective [J].
Juang, Biing Hwang .
APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2016, 5
[22]   Deep Neural Networks and PIDE Discretizations [J].
Bohn, Bastian ;
Griebel, Michael ;
Kannan, Dinesh .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (03) :1145-1170
[23]   A Study on Deep Neural Networks Framework [J].
Huang Yi ;
Duan Xiusheng ;
Sun Shiyu ;
Chen Zhigang .
PROCEEDINGS OF 2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC 2016), 2016, :1519-1522
[24]   Risk sharing with deep neural networks [J].
Burzoni, M. ;
Doldi, A. ;
Compagnoni, E. Monzio .
QUANTITATIVE FINANCE, 2024, 24 (02) :233-252
[25]   Image disambiguation with deep neural networks [J].
DeGuchy, Omar ;
Ho, Alex ;
Marcia, Roummel F. .
APPLICATIONS OF MACHINE LEARNING, 2019, 11139
[26]   Visual Genealogy of Deep Neural Networks [J].
Wang, Qianwen ;
Yuan, Jun ;
Chen, Shuxin ;
Su, Hang ;
Qu, Huamin ;
Liu, Shixia .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (11) :3340-3352
[27]   Dynamic Slicing for Deep Neural Networks [J].
Zhang, Ziqi ;
Li, Yuanchun ;
Guo, Yao ;
Chen, Xiangqun ;
Liu, Yunxin .
PROCEEDINGS OF THE 28TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE '20), 2020, :838-850
[28]   Deep limits of residual neural networks [J].
Thorpe, Matthew ;
van Gennip, Yves .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2023, 10 (01)
[29]   Digital watermarking for deep neural networks [J].
Yuki Nagai ;
Yusuke Uchida ;
Shigeyuki Sakazawa ;
Shin’ichi Satoh .
International Journal of Multimedia Information Retrieval, 2018, 7 :3-16
[30]   Deep Neural Networks in Semantic Analysis [J].
Averkin, Alexey ;
Yarushev, Sergey .
10TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTIONS - ICSCCW-2019, 2020, 1095 :846-853