Subaging in underparametrized deep neural networks

被引:0
|
作者
Herrera Segura, Carolina [1 ]
Montoya, Edison [2 ,4 ]
Tapias, Diego [3 ]
机构
[1] Univ Antioquia, Inst Fis, Medellin, Colombia
[2] BCFort, Medellin, Colombia
[3] Univ Gottingen, Inst Theoret Phys, Gottingen, Germany
[4] Univ Antioquia, Medellin, Colombia
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2022年 / 3卷 / 03期
关键词
subaging; deep neural networks; glassy dynamics; underparametrized; STATISTICAL-MECHANICS; REGIMES; ENERGY;
D O I
10.1088/2632-2153/ac8f1b
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a simple classification problem to show that the dynamics of finite-width Deep Neural Networks in the underparametrized regime gives rise to effects similar to those associated with glassy systems, namely a slow evolution of the loss function and aging. Remarkably, the aging is sublinear in the waiting time (subaging) and the power-law exponent characterizing it is robust to different architectures under the constraint of a constant total number of parameters. Our results are maintained in the more complex scenario of the MNIST database. We find that for this database there is a unique exponent ruling the subaging behavior in the whole phase.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep Neural Networks for Energy Load Forecasting
    Amarasinghe, Kasun
    Marino, Daniel L.
    Manic, Milos
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1483 - 1488
  • [2] Tracking with Deep Neural Networks
    Kucharczyk, Marcin
    Wolter, Marcin
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2019, 2019, 11176
  • [3] Tweaking Deep Neural Networks
    Kim, Jinwook
    Yoon, Heeyong
    Kim, Min-Soo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5715 - 5728
  • [4] Orthogonal Deep Neural Networks
    Li, Shuai
    Jia, Kui
    Wen, Yuxin
    Liu, Tongliang
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (04) : 1352 - 1368
  • [5] On the Opacity of Deep Neural Networks
    Sogaard, Anders
    CANADIAN JOURNAL OF PHILOSOPHY, 2024, : 224 - 239
  • [6] Dynamic Onloading of Deep Neural Networks from Cloud to Device
    Almeida, Mario
    Laskaridis, Stefanos
    Venieris, Stylianos, I
    Leontiadis, Ilias
    Lane, Nicholas D.
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (06)
  • [7] Building Energy Load Forecasting using Deep Neural Networks
    Marino, Daniel L.
    Amarasinghe, Kasun
    Manic, Milos
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 7046 - 7051
  • [8] Dynamic Slicing for Deep Neural Networks
    Zhang, Ziqi
    Li, Yuanchun
    Guo, Yao
    Chen, Xiangqun
    Liu, Yunxin
    PROCEEDINGS OF THE 28TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE '20), 2020, : 838 - 850
  • [9] A Representer Theorem for Deep Neural Networks
    Unser, Michael
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [10] Conceptual alignment deep neural networks
    Dai, Yinglong
    Wang, Guojun
    Li, Kuan-Ching
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (03) : 1631 - 1642