A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering

被引:978
作者
Billiet, Thomas [1 ]
Vandenhaute, Mieke [1 ]
Schelfhout, Jorg [1 ]
Van Vlierberghe, Sandra [1 ]
Dubruel, Peter [1 ]
机构
[1] Univ Ghent, Polymer Chem & Biomat Res Grp, B-9000 Ghent, Belgium
关键词
Hydrogel; Rapid prototyping; Scaffold; Photolithography; MESENCHYMAL STEM-CELLS; FREE-FORM FABRICATION; 3-DIMENSIONAL POLYMER SCAFFOLDS; SOLID FREEFORM FABRICATION; INTERVERTEBRAL DISC CELLS; CROSS-LINKED HYALURONAN; COMPUTER-AIDED-DESIGN; MARROW STROMAL CELLS; IN-VIVO BONE; SURFACE MODIFICATION;
D O I
10.1016/j.biomaterials.2012.04.050
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The combined potential of hydrogels and rapid prototyping technologies has been an exciting route in developing tissue engineering scaffolds for the past decade. Hydrogels represent to be an interesting starting material for soft, and lately also for hard tissue regeneration. Their application enables the encapsulation of cells and therefore an increase of the seeding efficiency of the fabricated structures. Rapid prototyping techniques on the other hand, have become an elegant tool for the production of scaffolds with the purpose of cell seeding and/or cell encapsulation. By means of rapid prototyping, one can design a fully interconnected 3-dimensional structure with pre-determined dimensions and porosity. Despite this benefit, some of the rapid prototyping techniques are not or less suitable for the generation of hydrogel scaffolds. In this review, we therefore give an overview on the different rapid prototyping techniques suitable for the processing of hydrogel materials. A primary distinction will be made between (i) laser-based, (ii) nozzle-based, and (iii) printer-based systems. Special attention will be addressed to current trends and limitations regarding the respective techniques. Each of these techniques will be further discussed in terms of the different hydrogel materials used so far. One major drawback when working with hydrogels is the lack of mechanical strength. Therefore, maintaining and improving the mechanical integrity of the processed scaffolds has become a key issue regarding 3-dimensional hydrogel structures. This limitation can either be overcome during or after processing the scaffolds, depending on the applied technology and materials. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6020 / 6041
页数:22
相关论文
共 299 条
[1]   Fibrin: A versatile scaffold for tissue engineering applications [J].
Ahmed, Tamer A. E. ;
Dare, Emma V. ;
Hincke, Max .
TISSUE ENGINEERING PART B-REVIEWS, 2008, 14 (02) :199-215
[2]   Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery [J].
Aimetti, Alex A. ;
Machen, Alexandra J. ;
Anseth, Kristi S. .
BIOMATERIALS, 2009, 30 (30) :6048-6054
[3]   Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures [J].
Almany, L ;
Seliktar, D .
BIOMATERIALS, 2005, 26 (15) :2467-2477
[4]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[5]   Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system [J].
Ang, TH ;
Sultana, FSA ;
Hutmacher, DW ;
Wong, YS ;
Fuh, JYH ;
Mo, XM ;
Loh, HT ;
Burdet, E ;
Teoh, SH .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 20 (1-2) :35-42
[6]   In situ forming degradable networks and their application in tissue engineering and drug delivery [J].
Anseth, KS ;
Metters, AT ;
Bryant, SJ ;
Martens, PJ ;
Elisseeff, JH ;
Bowman, CN .
JOURNAL OF CONTROLLED RELEASE, 2002, 78 (1-3) :199-209
[7]   Three-dimensional inkjet biofabrication based on designed images [J].
Arai, Kenichi ;
Iwanaga, Shintaroh ;
Toda, Hideki ;
Genci, Capi ;
Nishiyama, Yuichi ;
Nakamura, Makoto .
BIOFABRICATION, 2011, 3 (03)
[8]  
Arcaute K, 2005, MANUF ENG DIV ASME, V16, P161
[9]  
Arcaute K, MAT RES SOC S, P191
[10]   Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells [J].
Arcaute, Karina ;
Mann, Brenda K. ;
Wicker, Ryan B. .
ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (09) :1429-1441