Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at s=1, and explicit lower bounds for relative class numbers of CM-fields

被引:31
作者
Louboutin, S [1 ]
机构
[1] Inst Math Luminy, UPR 906, F-13288 Marseille 9, France
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2001年 / 53卷 / 06期
关键词
Dedekind zeta functions; L-functions; relative class numbers; CM-fields;
D O I
10.4153/CJM-2001-045-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide the reader with a uniform approach for obtaining various useful explicit upper bounds on residues of Dedekind zeta functions of numbers fields and on absolute values of values at s = 1 of L-series associated with primitive characters on ray class groups of number fields. To make it quite clear to the reader how useful such bounds are when dealing with class number problems for CM-fields, we deduce an upper bound for the root discriminants of the normal CM-fields with (relative) class number one.
引用
收藏
页码:1194 / 1222
页数:29
相关论文
共 48 条
[1]  
[Anonymous], 1997, INTRO CYCLOTOMIC FIE
[2]  
[Anonymous], 1997, PROGR MATH
[3]   THE IMAGINARY QUADRATIC FIELDS OF CLASS NUMBER-4 [J].
ARNO, S .
ACTA ARITHMETICA, 1992, 60 (04) :321-334
[4]   UPPER AND LOWER BOUNDS OF THE NUMBER OF CLASSES OF IDEALS OF 1ST-DEGREE PURE REAL FIELDS [J].
BARRUCAND, P ;
LOUBOUTIN, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :533-540
[5]  
BOUTTEAUX G, THESIS U CAEN
[6]  
BOUTTEAUX G, IN PRESS CLASS NUMBE
[7]   Class numbers of imaginary abelian number fields [J].
Chang, KY ;
Kwon, SH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2517-2528
[8]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[9]   ABC implies no "Siegel zeros" for L-functions of characters with negative discriminant [J].
Granville, A ;
Stark, HM .
INVENTIONES MATHEMATICAE, 2000, 139 (03) :509-523
[10]   SOME ANALYTIC BOUNDS FOR ZETA FUNCTIONS AND CLASS NUMBERS [J].
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1979, 55 (01) :37-47