Leakage-proof phase change composites supported by biomass carbon aerogels from succulents

被引:194
作者
Wei, Yanhong [1 ]
Li, Juanjuan [1 ]
Sun, Furong [1 ]
Wu, Jinrong [2 ]
Zhao, Lijuan [1 ]
机构
[1] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; GRAPHENE AEROGEL; ENERGY; STORAGE; HEAT; MICROENCAPSULATION; MICROCAPSULES; CONVERSION; BEHAVIOR; SHELL;
D O I
10.1039/C7GC03595K
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical applications of organic phase change materials (PCM) are greatly limited, due to their leakage in the melted state and unacceptably low thermal conductivity. To address such a challenge, we use a succulent-based carbon aerogel (SCA), which consists of the epidermis, palisade tissue and spongy tissue, as an encapsulation scaffold for paraffin to fabricate PCM composites. The spongy tissue consisting of rich closed spherical cells allows a high loading efficiency (up to 95 wt%) for organic PCM, while the tightly-arranged palisade tissue and dense epidermis cells can act as two protective layers to prevent the leakage of liquid, enabling a mass loss as low as 1.3 wt% upon phase change. The PCM composites also show a high latent heat approaching that of pure paraffin and an excellent thermal cycling performance with 100% retention after being tested by using a differential scanning calorimeter 20 times. Moreover, the SCA not only serves as thermal conductive paths within the organic matrix, thereby remarkably enhancing the thermal conductivity of the PCM composites, but also acts as an effective photon captor and molecular heater, thus significantly increasing the light-to-thermal energy conversion efficiency of the PCM composites. As such, the SCA is an ideal multifunctional scaffold for PCM, which can advance the practical applications of PCM composites.
引用
收藏
页码:1858 / 1865
页数:8
相关论文
共 46 条
[1]   Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges [J].
Chen, Liangjie ;
Zou, Ruqiang ;
Xia, Wei ;
Liu, Zhenpu ;
Shang, Yuanyuan ;
Zhu, Jinlong ;
Wang, Yingxia ;
Lin, Jianhua ;
Xia, Dingguo ;
Cao, Anyuan .
ACS NANO, 2012, 6 (12) :10884-10892
[2]   Synthesis and Characterization of Microencapsulated Paraffin Microcapsules as Shape-Stabilized Thermal Energy Storage Materials [J].
Chen, Zhi ;
Cao, Lei ;
Fang, Guiyin ;
Shan, Feng .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2013, 17 (02) :112-123
[3]   THERMAL-CONDUCTIVITY OF POLYMERS [J].
CHOY, CL .
POLYMER, 1977, 18 (10) :984-1004
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]   The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J].
Cui, Yanbin ;
Liu, Caihong ;
Hu, Shan ;
Yu, Xun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (04) :1208-1212
[6]   Effect of carbon nanofiber additives on thermal behavior of phase change materials [J].
Elgafy, A ;
Lafdi, K .
CARBON, 2005, 43 (15) :3067-3074
[7]   Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets [J].
Fang, Xin ;
Fan, Li-Wu ;
Ding, Qing ;
Wang, Xiao ;
Yao, Xiao-Li ;
Hou, Jian-Feng ;
Yu, Zi-Tao ;
Cheng, Guan-Hua ;
Hu, Ya-Cai ;
Cen, Ke-Fa .
ENERGY & FUELS, 2013, 27 (07) :4041-4047
[8]   ORGANIC-PHASE CHANGE MATERIALS FOR THERMAL-ENERGY STORAGE [J].
FELDMAN, D ;
SHAPIRO, MM ;
BANU, D .
SOLAR ENERGY MATERIALS, 1986, 13 (01) :1-10
[9]   Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries [J].
Goli, Pradyumna ;
Legedza, Stanislav ;
Dhar, Aditya ;
Salgado, Ruben ;
Renteria, Jacqueline ;
Balandin, Alexander A. .
JOURNAL OF POWER SOURCES, 2014, 248 :37-43
[10]   Nanocapsules containing salt hydrate phase change materials for thermal energy storage [J].
Graham, Michael ;
Shchukina, Elena ;
De Castro, Paula Felix ;
Shchukin, Dmitry .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :16906-16912