Modeling for (physical) biologists: an introduction to the rule-based approach

被引:34
作者
Chylek, Lily A. [1 ,2 ,3 ]
Harris, Leonard A. [4 ]
Faeder, James R. [5 ]
Hlavacek, William S. [2 ,3 ,6 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Vanderbilt Univ, Sch Med, Dept Canc Biol, Nashville, TN 37212 USA
[5] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA 15260 USA
[6] New Mexico Consortium, Los Alamos, NM 87544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
rule-based modeling; systems biology; cell signaling; BIOMOLECULAR SITE DYNAMICS; GROWTH-FACTOR RECEPTOR; FC-EPSILON-RI; CELL-SURFACE; STOCHASTIC SIMULATION; SIGNALING PATHWAYS; REACTION NETWORKS; DETAILED BALANCE; VISUAL INTERFACE; EARLY EVENTS;
D O I
10.1088/1478-3975/12/4/045007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.
引用
收藏
页数:24
相关论文
共 143 条
[81]   Quantification of short term signaling by the epidermal growth factor receptor [J].
Kholodenko, BN ;
Demin, OV ;
Moehren, G ;
Hoek, JB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :30169-30181
[82]   Dynamics and mechanisms of coupled protein folding and binding reactions [J].
Kiefhaber, Thomas ;
Bachmann, Annett ;
Jensen, Kristine Steen .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (01) :21-29
[83]   Timescale analysis of rule-based biochemical reaction networks [J].
Klinke, David J., II ;
Finley, Stacey D. .
BIOTECHNOLOGY PROGRESS, 2012, 28 (01) :33-44
[84]   Mechanism reduction during computer generation of compact reaction models [J].
Klinke, DJ ;
Broadbelt, LJ .
AICHE JOURNAL, 1997, 43 (07) :1828-1837
[85]   CHEMICAL-KINETICS AND THE ORIGINS OF PHYSICAL-CHEMISTRY [J].
LAIDLER, KJ .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1985, 32 (01) :43-75
[86]   STOCHSIM:: modelling of stochastic biomolecular processes [J].
Le Novère, N ;
Shimizu, TS .
BIOINFORMATICS, 2001, 17 (06) :575-576
[87]   The Systems Biology Graphical Notation [J].
Le Novere, Nicolas ;
Hucka, Michael ;
Mi, Huaiyu ;
Moodie, Stuart ;
Schreiber, Falk ;
Sorokin, Anatoly ;
Demir, Emek ;
Wegner, Katja ;
Aladjem, Mirit I. ;
Wimalaratne, Sarala M. ;
Bergman, Frank T. ;
Gauges, Ralph ;
Ghazal, Peter ;
Kawaji, Hideya ;
Li, Lu ;
Matsuoka, Yukiko ;
Villeger, Alice ;
Boyd, Sarah E. ;
Calzone, Laurence ;
Courtot, Melanie ;
Dogrusoz, Ugur ;
Freeman, Tom C. ;
Funahashi, Akira ;
Ghosh, Samik ;
Jouraku, Akiya ;
Kim, Sohyoung ;
Kolpakov, Fedor ;
Luna, Augustin ;
Sahle, Sven ;
Schmidt, Esther ;
Watterson, Steven ;
Wu, Guanming ;
Goryanin, Igor ;
Kell, Douglas B. ;
Sander, Chris ;
Sauro, Herbert ;
Snoep, Jacky L. ;
Kohn, Kurt ;
Kitano, Hiroaki .
NATURE BIOTECHNOLOGY, 2009, 27 (08) :735-741
[89]   Multi-Level Kinetic Model of mRNA Delivery via Transfection of Lipoplexes [J].
Ligon, Thomas S. ;
Leonhardt, Carolin ;
Raedler, Joachim O. .
PLOS ONE, 2014, 9 (09)
[90]   Efficient stochastic simulation of reaction-diffusion processes via direct compilation [J].
Lis, Mieszko ;
Artyomov, Maxim N. ;
Devadas, Srinivas ;
Chakraborty, Arup K. .
BIOINFORMATICS, 2009, 25 (17) :2289-2291