Modeling for (physical) biologists: an introduction to the rule-based approach

被引:34
作者
Chylek, Lily A. [1 ,2 ,3 ]
Harris, Leonard A. [4 ]
Faeder, James R. [5 ]
Hlavacek, William S. [2 ,3 ,6 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Vanderbilt Univ, Sch Med, Dept Canc Biol, Nashville, TN 37212 USA
[5] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA 15260 USA
[6] New Mexico Consortium, Los Alamos, NM 87544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
rule-based modeling; systems biology; cell signaling; BIOMOLECULAR SITE DYNAMICS; GROWTH-FACTOR RECEPTOR; FC-EPSILON-RI; CELL-SURFACE; STOCHASTIC SIMULATION; SIGNALING PATHWAYS; REACTION NETWORKS; DETAILED BALANCE; VISUAL INTERFACE; EARLY EVENTS;
D O I
10.1088/1478-3975/12/4/045007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.
引用
收藏
页数:24
相关论文
共 143 条
[41]  
Danos V, 2007, LECT NOTES COMPUT SC, V4807, P139
[42]  
Danos V, 2007, LECT NOTES COMPUT SC, V4703, P17
[43]  
Danos V, 2009, LECT NOTES COMPUT SC, V5750, P116
[44]   Modeling and simulation of genetic regulatory systems: A literature review [J].
De Jong, H .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (01) :67-103
[45]   The Beta Workbench:: a computational tool to study the dynamics of biological systems [J].
Dematte, Lorenzo ;
Priami, Corrado ;
Romanel, Alessandro .
BRIEFINGS IN BIOINFORMATICS, 2008, 9 (05) :437-449
[46]   Thermodynamically feasible kinetic models of reaction networks [J].
Ederer, Michael ;
Gilles, Ernst Dieter .
BIOPHYSICAL JOURNAL, 2007, 92 (06) :1846-1857
[47]   THE EFFECT OF RECEPTOR DENSITY ON THE FORWARD RATE-CONSTANT FOR BINDING OF LIGANDS TO CELL-SURFACE RECEPTORS [J].
ERICKSON, J ;
GOLDSTEIN, B ;
HOLOWKA, D ;
BAIRD, B .
BIOPHYSICAL JOURNAL, 1987, 52 (04) :657-662
[48]  
Faeder James R., 2009, V500, P113, DOI 10.1007/978-1-59745-525-1_5
[49]   Combinatorial complexity and dynamical restriction of network flows in signal transduction [J].
Faeder, JR ;
Blinov, ML ;
Goldstein, B ;
Hlavacek, WS .
SYSTEMS BIOLOGY, 2005, 2 (01) :5-15
[50]   Rule-based modeling of biochemical networks [J].
Faeder, JR ;
Blinov, ML ;
Goldstein, B ;
Hlavacek, WS .
COMPLEXITY, 2005, 10 (04) :22-41