Modeling for (physical) biologists: an introduction to the rule-based approach

被引:34
作者
Chylek, Lily A. [1 ,2 ,3 ]
Harris, Leonard A. [4 ]
Faeder, James R. [5 ]
Hlavacek, William S. [2 ,3 ,6 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Vanderbilt Univ, Sch Med, Dept Canc Biol, Nashville, TN 37212 USA
[5] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA 15260 USA
[6] New Mexico Consortium, Los Alamos, NM 87544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
rule-based modeling; systems biology; cell signaling; BIOMOLECULAR SITE DYNAMICS; GROWTH-FACTOR RECEPTOR; FC-EPSILON-RI; CELL-SURFACE; STOCHASTIC SIMULATION; SIGNALING PATHWAYS; REACTION NETWORKS; DETAILED BALANCE; VISUAL INTERFACE; EARLY EVENTS;
D O I
10.1088/1478-3975/12/4/045007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.
引用
收藏
页数:24
相关论文
共 143 条
[1]   Physicochemical modelling of cell signalling pathways [J].
Aldridge, Bree B. ;
Burke, John M. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
NATURE CELL BIOLOGY, 2006, 8 (11) :1195-1203
[2]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[3]  
Andrews SS, 2012, METHODS MOL BIOL, V804, P519, DOI 10.1007/978-1-61779-361-5_26
[4]  
Angermann BR, 2012, NAT METHODS, V9, P283, DOI [10.1038/nmeth.1861, 10.1038/NMETH.1861]
[5]   Sloppy models, parameter uncertainty, and the role of experimental design [J].
Apgar, Joshua F. ;
Witmer, David K. ;
White, Forest M. ;
Tidor, Bruce .
MOLECULAR BIOSYSTEMS, 2010, 6 (10) :1890-1900
[6]   New approaches to modeling complex biochemistry [J].
Bachman, John A. ;
Sorger, Peter .
NATURE METHODS, 2011, 8 (02) :130-131
[7]   Nanoconnectomic upper bound on the variability of synaptic plasticity [J].
Bartol, Thomas M., Jr. ;
Bromer, Cailey ;
Kinney, Justin ;
Chirillo, Michael A. ;
Bourne, Jennifer N. ;
Harris, Kristen M. ;
Sejnowski, Terrence J. .
ELIFE, 2015, 4
[8]   Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells [J].
Barua, Dipak ;
Hlavacek, William S. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[9]   A Mechanistic Model of Early FcεRI Signaling: Lipid Rafts and the Question of Protection from Dephosphorylation [J].
Barua, Dipak ;
Goldstein, Byron .
PLOS ONE, 2012, 7 (12)
[10]   A Computational Model for Early Events in B Cell Antigen Receptor Signaling: Analysis of the Roles of Lyn and Fyn [J].
Barua, Dipak ;
Hlavacek, William S. ;
Lipniacki, Tomasz .
JOURNAL OF IMMUNOLOGY, 2012, 189 (02) :646-658