Asymptotic stability for nonlinear Kirchhoff systems

被引:28
作者
Autuori, Giuseppina [2 ]
Pucci, Patrizia [1 ]
Salvatori, Maria Cesarina [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
Nonlinear damped Kirchhoff systems; Strongly damped Kirchhoff systems; Asymptotic stability; DISSIPATIVE WAVE SYSTEMS; ATTRACTORS; EQUATIONS; STRINGS; DECAY;
D O I
10.1016/j.nonrwa.2007.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic stability for solutions of the nonlinear damped Kirchhoff system, with homogeneous Dirichlet boundary conditions, under fairly natural assumptions on the external force f and the distributed damping Q. Then the results are extended to a more delicate problem involving also an internal dissipation of higher order, the so called strongly damped Kirchhoff system. Finally, the study is further extended to strongly damped Kirchhoff-polyharmonic systems, which model several interesting problems of the Woinowsky-Krieger type. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:889 / 909
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 2001, ENG RUBBER DESIGN RU
[2]  
Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
[3]  
Boccuto A., 1998, REND CIRC MAT PALERM, V47, P25
[4]  
DANCONA R, 1994, MATH METHOD APPL SCI, V17, P477
[5]   Finite amplitude elastic waves propagating in compressible solids [J].
Destrade, M ;
Saccomandi, G .
PHYSICAL REVIEW E, 2005, 72 (01)
[6]  
Ferreira J. L. A. Paulo, 2003, ENV 2010 SITUAT PERS, P1
[7]   Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation [J].
Gorain, Ganesh C. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) :235-242
[8]  
Kirchhoff G, 1883, Vorlesungen uber. Mechanik
[9]   On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation [J].
Ono, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :321-342
[10]   Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings [J].
Ono, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (02) :273-301