Existence and Numerical Solution of the Volterra Fractional Integral Equations of the Second Kind

被引:11
作者
Atangana, Abdon [1 ]
Bildik, Necdet [2 ]
机构
[1] Univ Orange Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
[2] Celal Bayar Univ, Fac Art & Sci, Dept Math, TR-45047 Manisa, Turkey
关键词
DIFFUSION EQUATION; SYSTEMS;
D O I
10.1155/2013/981526
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents the possible generalization of the Volterra integral equation second kind to the concept of fractional integral. Using the Picard method, we present the existence and the uniqueness of the solution of the generalized integral equation. The numerical solution is obtained via the Simpson 3/8 rule method. The convergence of this scheme is presented together with numerical results.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Chebyshev polynomial solutions of systems of linear integral equations [J].
Akyüz-Dascioglu, A .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (01) :221-232
[2]  
[Anonymous], 2013, MATH PROBL ENG, DOI DOI 10.1155/2013/853127
[3]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[4]  
[Anonymous], ADV DIFFERENCE EQUAT
[5]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[6]  
ATANGANA A, 2013, ABSTR APPL ANAL, DOI DOI 10.1155/2013/279681
[7]   The Time-Fractional Coupled-Korteweg-de-Vries Equations [J].
Atangana, Abdon ;
Secer, Aydin .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[8]   A Possible Generalization of Acoustic Wave Equation Using the Concept of Perturbed Derivative Order [J].
Atangana, Abdon ;
Kilicman, Adem .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[9]   A Generalized Version of a Low Velocity Impact between a Rigid Sphere and a Transversely Isotropic Strain-Hardening Plate Supported by a Rigid Substrate Using the Concept of Noninteger Derivatives [J].
Atangana, Abdon ;
Ahmed, O. Aden ;
Bildik, Necdet .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[10]  
Atkinson KE., 1996, Cambridge Monographs on Applied and Computational Mathematics