The equivalence between fuzzy Mealy and fuzzy Moore machines

被引:33
作者
Li, Yongming [1 ]
Pedrycz, Witold
机构
[1] Shaanxi Normal Univ, Coll Comp Sci, Xian 710062, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
关键词
fuzzy Mealy machine; fuzzy Moore machine; fuzzy sequential-like machine; lattice-ordered monoid; equivalence;
D O I
10.1007/s00500-005-0022-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the relationships between fuzzy Mealy and fuzzy Moore machines in the frame of truth values in a lattice-ordered monoid. In particular, we show that lattice-valued sequential-like machines and lattice-valued finite Moore machines are equivalent in the sense they exhibit the same input-output characteristics.
引用
收藏
页码:953 / 959
页数:7
相关论文
共 31 条
[1]   On quotient machines of a fuzzy automaton and the minimal machine [J].
Basak, NC ;
Gupta, A .
FUZZY SETS AND SYSTEMS, 2002, 125 (02) :223-229
[2]  
Birkhoff G., 1973, Lattice Theory
[3]  
Booth T.L., 1967, Sequential Machines and Automata Theory
[4]   Minimization algorithm of fuzzy finite automata [J].
Cheng, W ;
Mo, ZW .
FUZZY SETS AND SYSTEMS, 2004, 141 (03) :439-448
[5]  
Gratzer G., 1978, GEN LATTICE THEORY
[6]  
Hopcroft J. E., 2007, Introduction to Automata Theory, Languages and Computation
[7]  
Kandel A., 1980, Fuzzy Switching and Automata Theory and Applications
[8]   Remarks on uninorm aggregation operators [J].
Li, YM ;
Shi, ZK .
FUZZY SETS AND SYSTEMS, 2000, 114 (03) :377-380
[9]  
Li YM, 2002, J PURE APPL ALGEBRA, V176, P249
[10]  
LI YM, 2001, J SHAANXI NORMAL U, V29, P1