ASYMPTOTIC INTEGRATION OF SOME CLASSES OF FRACTIONAL DIFFERENTIAL EQUATIONS

被引:17
作者
Medved, Milan [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Math & Numer Math, SK-84248 Bratislava, Slovakia
来源
DIFFERENTIAL AND DIFFERENCE EQUATIONS AND APPLICATIONS 2012 | 2013年 / 54卷
关键词
fractional differential equations; asymptotic integration; Caputo's derivative; Riemann-Liouville integral; GLOBAL EXISTENCE; BIHARI TYPE; BEHAVIOR; INEQUALITIES;
D O I
10.2478/tmmp-2013-00010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the problem of asymptotic integration of nonlinear higher order fractional differential equations of the Caputo's type. We give some conditions under which all global solutions of these equations behave like linear functions as t -> infinity.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 31 条
[1]   On the asymptotic integration of nonlinear differential equations [J].
Agarwal, Ravi P. ;
Djebali, Smail ;
Moussaoui, Toufik ;
Mustafa, Octavian G. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (02) :352-376
[2]  
[Anonymous], 1993, INTRO FRACTIONAL CAL
[3]   Asymptotically Linear Solutions for Some Linear Fractional Differential Equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[4]   Asymptotic integration of (1+α)-order fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1492-1500
[5]  
Bihari I., 1957, ACTA MATH ACAD SCI H, V8, P261
[6]  
Caligo D., 1941, Bollettino dell'Unione Matematica Italiana, V6, P286
[7]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]   On the existence of positive solutions of second order differential equations [J].
Constantin, Adrian .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (02) :131-138
[10]  
Constantine A., 1993, Rend. Mat. Appl, V13, P627