History-dependent percolation on multiplex networks

被引:20
作者
Li, Ming [1 ]
Lu, Linyuan [2 ,3 ,4 ]
Deng, Youjin [5 ,6 ]
Hu, Mao-Bin [1 ]
Wang, Hao [2 ]
Medo, Matus [2 ]
Stanley, H. Eugene [3 ,7 ,8 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[3] Hangzhou Normal Univ, Alibaba Res Ctr Complex Sci, Hangzhou 310036, Peoples R China
[4] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Modern Phys, Hefei 230026, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat, Ctr Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[7] Boston Univ, Dept Phys, Boston, MA 02215 USA
[8] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
基金
中国国家自然科学基金;
关键词
percolation; multiplex networks; critical phenomena; brain networks; COMPLEX NETWORKS; TRANSITION;
D O I
10.1093/nsr/nwaa029
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The structure of interconnected systems and its impact on the system dynamics is a much-studied cross-disciplinary topic. Although various critical phenomena have been found in different models, study of the connections between different percolation transitions is still lacking. Here we propose a unified framework to study the origins of the discontinuous transitions of the percolation process on interacting networks. The model evolves in generations with the result of the present percolation depending on the previous state, and thus is history-dependent. Both theoretical analysis and Monte Carlo simulations reveal that the nature of the transition remains the same at finite generations but exhibits an abrupt change for the infinite generation. We use brain functional correlation and morphological similarity data to show that our model also provides a general method to explore the network structure and can contribute tomany practical applications, such as detecting the abnormal structures of human brain networks.
引用
收藏
页码:1296 / 1305
页数:10
相关论文
共 46 条
[1]  
Aharony A., 2003, Introduction to Percolation Theory
[2]  
[Anonymous], 2010, Complex Networks: Structure, Robustness and Function
[3]  
Barab��si A-L., 2016, Network science
[4]   The extreme vulnerability of interdependent spatially embedded networks [J].
Bashan, Amir ;
Berezin, Yehiel ;
Buldyrev, Sergey V. ;
Havlin, Shlomo .
NATURE PHYSICS, 2013, 9 (10) :667-672
[5]   Network neuroscience [J].
Bassett, Danielle S. ;
Sporns, Olaf .
NATURE NEUROSCIENCE, 2017, 20 (03) :353-364
[6]   Avalanche Collapse of Interdependent Networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[7]  
Bianconi G, 2018, MULTILAYER NETWORKS: STRUCTURE AND FUNCTION, DOI 10.1093/oso/9780198753919.001.0001
[8]   MULTI LAYER NETWORKS Dangerous liaisons? [J].
Bianconi, Ginestra .
NATURE PHYSICS, 2014, 10 (10) :712-714
[9]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[10]   Emerging depression in adolescence coincides with accelerated frontal cortical thinning [J].
Bos, Marieke G. N. ;
Peters, Sabine ;
van de Kamp, Ferdi C. ;
Crone, Eveline A. ;
Tamnes, Christian K. .
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2018, 59 (09) :994-1002