In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement

被引:126
作者
Flauraud, Valentin [1 ]
Regmi, Raju [2 ,3 ]
Winkler, Pamina M. [3 ]
Alexander, Duncan T. L. [4 ]
Rigneault, Herve [2 ]
van Hulst, Niek F. [3 ,5 ]
Garcia-Parajo, Maria F. [3 ,5 ]
Wenger, Jerome [2 ]
Brugger, Jurgen [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Microengn, Microsyst Lab, CH-1015 Lausanne, Switzerland
[2] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel, F-13013 Marseille, France
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[4] Ecole Polytech Fed Lausanne, CIME, CH-1015 Lausanne, Switzerland
[5] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
关键词
Optical nanoantennas; template stripping; electron beam lithography; fluorescence enhancement; plasmonics; SINGLE-MOLECULE FLUORESCENCE; DNA-ORIGAMI NANOANTENNAS; MODE WAVE-GUIDES; CORRELATION SPECTROSCOPY; ROOM-TEMPERATURE;
D O I
10.1021/acs.nanolett.6b04978
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical nanoantennas have a great potential for enhancing light-matter interactions at the nanometer scale, yet fabrication accuracy and lack of scalability currently limit ultimate antenna performance and applications. In most designs, the region of maximum field localization and enhancement (i.e., hotspot) is not readily accessible to the sample because it is buried into the nanostructure. Moreover, current large-scale fabrication techniques lack reproducible geometrical control below 20 nm. Here, we describe a new nanofabrication technique that applies planarization, etch back, and template stripping to expose the excitation hotspot at the surface, providing a major improvement over conventional electron beam lithography methods. We present large flat surface arrays of in-plane nanoantennas, featuring gaps as small as 10 nm with sharp edges, excellent reproducibility and full surface accessibility of the hotspot confined region. The novel fabrication approach drastically improves the optical performance of plasmonic nanoantennas to yield giant fluorescence enhancement factors up to 10(4)-10(8) times, together with nanoscale detection volumes in the 20 zL range. The method is fully scalable and adaptable to a wide range of antenna designs. We foresee broad applications by the use of these in-plane antenna geometries ranging from large-scale ultrasensitive sensor chips to microfluidics and live cell membrane investigations.
引用
收藏
页码:1703 / 1710
页数:8
相关论文
共 42 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[3]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[4]   Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations [J].
Aouani, Heykel ;
Mahboub, Oussama ;
Bonod, Nicolas ;
Devaux, Eloise ;
Popov, Evgeny ;
Rigneault, Herve ;
Ebbesen, Thomas W. ;
Wenger, Jerome .
NANO LETTERS, 2011, 11 (02) :637-644
[5]   Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement [J].
Aouani, Heykel ;
Wenger, Jerome ;
Gerard, Davy ;
Rigneault, Herve ;
Devaux, Eloise ;
Ebbesen, Thomas W. ;
Mahdavi, Farhad ;
Xu, Tingjun ;
Blair, Steve .
ACS NANO, 2009, 3 (07) :2043-2048
[6]   Single-molecule optomechanics in "picocavities" [J].
Benz, Felix ;
Schmidt, Mikolaj K. ;
Dreismann, Alexander ;
Chikkaraddy, Rohit ;
Zhang, Yao ;
Demetriadou, Angela ;
Carnegie, Cloudy ;
Ohadi, Hamid ;
de Nijs, Bart ;
Esteban, Ruben ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
SCIENCE, 2016, 354 (6313) :726-729
[7]   Spectral dependence of single molecule fluorescence enhancement [J].
Bharadwaj, Palash ;
Novotny, Lukas .
OPTICS EXPRESS, 2007, 15 (21) :14266-14274
[8]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[9]   Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature [J].
Bidault, Sebastien ;
Devilez, Alexis ;
Maillard, Vincent ;
Lermusiaux, Laurent ;
Guigner, Jean-Michel ;
Bonod, Nicolas ;
Wenger, Jerome .
ACS NANO, 2016, 10 (04) :4806-4815
[10]   Single-molecule strong coupling at room temperature in plasmonic nanocavities [J].
Chikkaraddy, Rohit ;
de Nijs, Bart ;
Benz, Felix ;
Barrow, Steven J. ;
Scherman, Oren A. ;
Rosta, Edina ;
Demetriadou, Angela ;
Fox, Peter ;
Hess, Ortwin ;
Baumberg, Jeremy J. .
NATURE, 2016, 535 (7610) :127-130