Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell

被引:35
|
作者
Darabi, Hossna [1 ]
Koleini, S. M. Javad [1 ]
Deglon, David [2 ]
Rezai, Bahram [3 ]
Abdollahy, Mahmoud [1 ]
机构
[1] Tarbiat Modares Univ, Dept Mineral Proc, Tehran 1411511, Iran
[2] Univ Cape Town, Dept Chem Engn, Mineral Proc Res Unit, ZA-7700 Cape Town, South Africa
[3] Amirkabir Univ Technol, Dept Min & Met Engn, Tehran 1591634311, Iran
关键词
Mechanical flotation; Turbulence; Bubble-particle attachment efficiency; Bubble-particle detachment efficiency; Bubble-particle collection efficiency; AIR BUBBLES; COLLISION EFFICIENCY; SIZE; KINETICS; SURFACE; MODELS; RATES; FLOW;
D O I
10.1016/j.powtec.2020.07.085
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper presents the effect of impeller speed and superficial gas velocity on bubble-particle attachment, detachment and collection efficiencies using pure quartz particles in a mechanical flotation cell. Detachment and collection efficiencies in different parts of cell were calculated by local turbulent energy dissipation rate measurements using high speed stereoscopic particle image velocimetry technique. In addition to high detachment efficiency, low attachment efficiency is also one of the reasons for low collection efficiency for coarse particles. The flotation rate constant increased with an increase in superficial gas velocity. However, the effect of superficial gas velocity on collection efficiency was negligible. This means that any effect of superficial gas velocity on flotation rate constant was due to changes in the number of bubbles and collision frequency. The flotation rate constant, collision frequency, and the number of bubbles increased with increasing impeller speed. However, collection efficiency decreased with increasing impeller speed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [1] The effect of energy input on bubble-particle collision, attachment, detachment, and collection efficiencies in a mechanical flotation cell
    Zhou, Ruoqian
    Li, Xiaoheng
    Li, Danlong
    Wang, Hainan
    Song, Zhicheng
    Yan, Xiaokang
    Zhang, Haijun
    POWDER TECHNOLOGY, 2025, 453
  • [2] Bubble-particle attachment and detachment in flotation
    Ralston, J
    Fornasiero, D
    Hayes, R
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1999, 56 (1-4) : 133 - 164
  • [3] Investigation of bubble-particle interactions in a mechanical flotation cell, part 1: Collision frequencies and efficiencies
    Darabi, Hossna
    Koleini, S. M. Javad
    Deglon, David
    Rezai, Bahram
    Abdollahy, Mahmoud
    MINERALS ENGINEERING, 2019, 134 : 54 - 64
  • [4] Investigation of bubble-particle attachment interaction during flotation
    Zhou, You
    Albijanic, Boris
    Tadesse, Bogale
    Wang, Yuling
    Yang, Jianguo
    MINERALS ENGINEERING, 2019, 133 : 91 - 94
  • [5] BUBBLE-PARTICLE AGGREGATE DETACHMENT FORCES AND FLOTATION
    NISHKOV, I
    PUGH, RJ
    CIM BULLETIN, 1988, 81 (914): : 92 - 92
  • [6] On modelling of bubble-particle attachment probability in flotation
    Nguyen, AV
    Ralston, J
    Schulze, HJ
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1998, 53 (04) : 225 - 249
  • [7] CFD modelling of bubble-particle collision rates and efficiencies in a flotation cell
    Koh, PTL
    Schwarz, MP
    MINERALS ENGINEERING, 2003, 16 (11) : 1055 - 1059
  • [8] Role of hydrophobic fine particles in coarse particle flotation: An analysis of bubble-particle attachment and detachment
    Ding, Shihao
    Yin, Qinglin
    He, Qi
    Feng, Xin
    Yang, Chao
    Gui, Xiahui
    Xing, Yaowen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 662
  • [9] Bubble-particle interaction in flotation cell
    卢寿慈
    TransactionsofNonferrousMetalsSocietyofChina, 2000, (S1) : 40 - 44
  • [10] Influence of liberation on bubble-particle attachment time in flotation
    Albijanic, Boris
    Subasinghe, G. K. Nimal
    Bradshaw, Dee J.
    Nguyen, Anh V.
    MINERALS ENGINEERING, 2015, 74 : 156 - 162