Lauricella Function and the Conformal Mapping of Polygons

被引:5
作者
Bezrodnykh, S., I [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
Schwarz-Christoffel integral; hypergeometric functions of many variables; analytic continuation; crowding; CHRISTOFFEL; PARAMETERS;
D O I
10.1134/S0001434622090218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some progress has been made in solving the problem of calculating the parameters of the Schwarz-Christoffel integral realizing a conformal mapping of a canonical domain onto a polygon. It is shown that an effective solution of this problem can be found by applying the formulas of analytic continuation of the Lauricella function F-D((N)) , which is a hypergeometric function of N complex variables. Several new formulas for such a continuation of the function F-D((N)) are presented that are oriented to the calculation of the parameters of the Schwarz-Christoffel integral in the "crowding" situation. An example of solving the parameter problem for a complicated polygon is given.
引用
收藏
页码:505 / 522
页数:18
相关论文
共 32 条
[1]   Revisiting the crowding phenomenon in Schwarz-Christoffel mapping [J].
Banjai, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :618-636
[2]   Analytic continuation of Lauricella's function FD(N) for variables close to unit near hyperplanes {zj = zl} [J].
Bezrodnykh, S., I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (05) :419-433
[3]   Analytic continuation of Lauricella's function FD(N) for large in modulo variables near hyperplanes {zj = zl) [J].
Bezrodnykh, S. I. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (04) :276-291
[4]   Asymptotics of the Riemann-Hilbert Problem for a Magnetic Reconnection Model in Plasma [J].
Bezrodnykh, S., I ;
Vlasov, V., I .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (11) :1839-1854
[5]   The Lauricella hypergeometric function FD(N) the Riemann-Hilbert problem, and some applications [J].
Bezrodnykh, S., I .
RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (06) :941-1031
[6]  
Bezrodnykh S. I., 2002, COMP MATH MATH PHYS, V42, P263
[7]  
Bezrodnykh S. I., 2006, SPECTRAL EVOLUTION P, V16, P51
[8]   Conformal mapping of rectangular heptagons [J].
Bogatyrev, A. B. .
SBORNIK MATHEMATICS, 2012, 203 (12) :1715-1735
[9]   Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping [J].
Driscoll, TA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (02) :168-186
[10]  
Erdelyi A., 1981, HIGHER TRANSCENDENTA, VI-III