Genetic basis of Alzheimer's dementia: role of mtDNA mutations

被引:39
作者
Grazina, M
Pratas, J
Silva, F
Oliveira, S
Santana, I
Oliveira, C
机构
[1] Univ Coimbra, Fac Med, Inst Biochem, P-3004504 Coimbra, Portugal
[2] Univ Coimbra, Ctr Neurosci & Cell Biol, Coimbra, Portugal
[3] Univ Hosp Coimbra, Neurol Unit, Coimbra, Portugal
关键词
16S rRNA; age of onset; Alzheimer's disease; amyloid; gene; mitochondria; mtDNA; ND1; oxidative stress; point mutation;
D O I
10.1111/j.1601-183X.2006.00225.x
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated to dementia in late adulthood. Amyloid precursor protein, presenilin 1 and presenilin 2 genes have been identified as causative genes for familial AD, whereas apolipoprotein E epsilon 4 allele has been associated to the risk for late onset AD. However, mutations on these genes do not explain the majority of cases. Mitochondrial respiratory chain (MRC) impairment has been detected in brain, muscle, fibroblasts and platelets of Alzheimer's patients, indicating a possible involvement of mitochondrial DNA (mtDNA) in the aetiology of the disease. Several reports have identified mtDNA mutations in Alzheimer's patients, suggesting the existence of related causal factors probably of mtDNA origin, thus pointing to the involvement of mtDNA in the risk contributing to dementia, but there is no consensual opinion in finding the cause for impairment. However, mtDNA mutations might modify age of onset, contributing to the neurodegenerative process, probably due to an impairment of MRC and/or translation mechanisms.
引用
收藏
页码:92 / 107
页数:16
相关论文
共 186 条
[1]   Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease [J].
Abe, T ;
Tohgi, H ;
Isobe, C ;
Murata, T ;
Sato, C .
JOURNAL OF NEUROSCIENCE RESEARCH, 2002, 70 (03) :447-450
[2]   The expression of several mitochondrial and nuclear genes encoding the subunits of electron transport chain enzyme complexes, cytochrome c oxidase, and NADH dehydrogenase, in different brain regions in Alzheimer's disease [J].
Aksenov, MY ;
Tucker, HM ;
Nair, P ;
Aksenova, MV ;
Butterfield, DA ;
Estus, S ;
Markesbery, WR .
NEUROCHEMICAL RESEARCH, 1999, 24 (06) :767-774
[3]   Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice [J].
Aliev, G ;
Seyidova, D ;
Lamb, BT ;
Obrenovich, ME ;
Siedlak, SL ;
Vinters, HV ;
Friedland, RP ;
LaManna, JC ;
Smith, MA ;
Perry, G .
NEUROLOGICAL RESEARCH, 2003, 25 (06) :665-674
[4]   Mitochondria DNA deletions in atherosclerotic hypoperfused brain microvessels as a primary target for the development of Alzheimer's disease [J].
Aliyev, A ;
Chen, SG ;
Seyidova, D ;
Smith, MA ;
Perry, G ;
de la Torre, J ;
Aliev, G .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2005, 229 :285-292
[5]  
Alzheimer A., 1907, ALLG Z PSYCHIAT, V64, P146, DOI DOI 10.1002/CA.980080612
[6]   Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells [J].
Anandatheerthavarada, HK ;
Biswas, G ;
Robin, MA ;
Avadhani, NG .
JOURNAL OF CELL BIOLOGY, 2003, 161 (01) :41-54
[7]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[8]   Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA [J].
Andrews, RM ;
Kubacka, I ;
Chinnery, PF ;
Lightowlers, RN ;
Turnbull, DM ;
Howell, N .
NATURE GENETICS, 1999, 23 (02) :147-147
[9]   Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology [J].
Apelt, J ;
Bigl, M ;
Wunderlich, P ;
Schliebs, R .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2004, 22 (07) :475-484
[10]   Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy [J].
Arbustini, E ;
Diegoli, M ;
Fasani, R ;
Grasso, M ;
Morbini, P ;
Banchieri, N ;
Bellini, O ;
Dal Bello, B ;
Pilotto, A ;
Magrini, G ;
Campana, C ;
Fortina, P ;
Gavazzi, A ;
Narula, J ;
Viganò, M .
AMERICAN JOURNAL OF PATHOLOGY, 1998, 153 (05) :1501-1510