Computational Analysis of Phosphoproteomics Data in Multi-Omics Cancer Studies

被引:20
作者
Mantini, Giulia [1 ]
Pham, Thang, V [1 ]
Piersma, Sander R. [1 ]
Jimenez, Connie R. [1 ]
机构
[1] Amsterdam UMC VUmc Locat, OncoProte Lab, Dept Med Oncol, CCA 1-60,De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
关键词
bioinformatics; cancer; data integration; multi-omics; phosphoproteomics; INTEGRATED PROTEOGENOMIC CHARACTERIZATION; COPY NUMBER ALTERATION; LUNG-CANCER; POSTTRANSLATIONAL MODIFICATIONS; PROTEIN-PHOSPHORYLATION; PRECISION MEDICINE; ANALYSIS REVEALS; CYTOSCAPE APP; HUMAN COLON; IDENTIFICATION;
D O I
10.1002/pmic.201900312
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully explain disease phenotypes. An increasing number of studies have now been focusing on multi-omics data integration, yet not many studies have included phosphoproteomics data, an important layer for understanding signaling pathways. Multi-omics integration methods with phosphoproteomics data are reviewed in the context of cancer research as well as multi-omics methods papers that would be promising to apply to phosphoproteomics data. Analysis of individual data types is still the major approach even in large cohort proteogenomics studies. Hence, a section is dedicated on possible integrative methods for multi-omics and phosphoproteomics data. In summary, this review provides the readers with both currently used integrative methods previously applied to phosphoproteomics and multi-omics data integration and other algorithms for multi-omics data integration promising for future application to phosphoproteomics data.
引用
收藏
页数:18
相关论文
共 116 条
[91]   Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses [J].
Stewart, Elizabeth ;
McEvoy, Justina ;
Wang, Hong ;
Chen, Xiang ;
Honnell, Victoria ;
Ocarz, Monica ;
Gordon, Brittney ;
Dapper, Jason ;
Blankenship, Kaley ;
Yang, Yanling ;
Li, Yuxin ;
Shaw, Timothy I. ;
Cho, Ji-Hoon ;
Wang, Xusheng ;
Xu, Beisi ;
Gupta, Pankaj ;
Fan, Yiping ;
Liu, Yu ;
Rusch, Michael ;
Griffiths, Lyra ;
Jeon, Jongrye ;
Freeman, Burgess B., III ;
Clay, Michael R. ;
Pappo, Alberto ;
Easton, John ;
Shurtleff, Sheila ;
Shelat, Anang ;
Zhou, Xin ;
Boggs, Kristy ;
Mulder, Heather ;
Yergeau, Donald ;
Bahrami, Armita ;
Mardis, Elaine R. ;
Wilson, Richard K. ;
Zhang, Jinghui ;
Peng, Junmin ;
Downing, James R. ;
Dyer, Michael A. .
CANCER CELL, 2018, 34 (03) :411-+
[92]   Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications [J].
Sugiyama, Naoyuki ;
Masuda, Takeshi ;
Shinoda, Kosaku ;
Nakamura, Akihiro ;
Tomita, Masaru ;
Ishihama, Yasushi .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (06) :1103-1109
[93]   PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates [J].
Suo, Sheng-Bao ;
Qiu, Jian-Ding ;
Shi, Shao-Ping ;
Chen, Xiang ;
Liang, Ru-Ping .
SCIENTIFIC REPORTS, 2014, 4
[94]   Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism [J].
Sychev, Zoi E. ;
Hu, Alex ;
DiMaio, Terri A. ;
Gitter, Anthony ;
Camp, Nathan D. ;
Noble, William S. ;
Wolf-Yadlin, Alejandro ;
Lagunoff, Michael .
PLOS PATHOGENS, 2017, 13 (03)
[95]   Universal and Confident Phosphorylation Site Localization Using phosphoRS [J].
Taus, Thomas ;
Koecher, Thomas ;
Pichler, Peter ;
Paschke, Carmen ;
Schmidt, Andreas ;
Henrich, Christoph ;
Mechtler, Karl .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (12) :5354-5362
[96]   PTMOracle: A Cytoscape App for Covisualizing and Coanalyzing Post-Translational Modifications in Protein Interaction Networks [J].
Tay, Aidan P. ;
Pang, Chi Nam Ignatius ;
Winter, Daniel L. ;
Wilkins, Marc R. .
JOURNAL OF PROTEOME RESEARCH, 2017, 16 (05) :1988-2003
[97]   CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms [J].
Terfve, Camille ;
Cokelaer, Thomas ;
Henriques, David ;
MacNamara, Aidan ;
Goncalves, Emanuel ;
Morris, Melody K. ;
van Iersel, Martijn ;
Lauffenburger, Douglas A. ;
Saez-Rodriguez, Julio .
BMC SYSTEMS BIOLOGY, 2012, 6
[98]   Proteogenomic systems analysis identifies targeted therapy resistance mechanisms in EGFR-mutated lung cancer [J].
Treue, Denise ;
Bockmayr, Michael ;
Stenzinger, Albrecht ;
Heim, Daniel ;
Hester, Svenja ;
Klauschen, Frederick .
INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (03) :545-557
[99]   Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package [J].
Tuncbag, Nurcan ;
Gosline, Sara J. C. ;
Kedaigle, Amanda ;
Soltis, Anthony R. ;
Gitter, Anthony ;
Fraenkel, Ernest .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (04)
[100]   dbPAF: an integrative database of protein phosphorylation in animals and fungi [J].
Ullah, Shahid ;
Lin, Shaofeng ;
Xu, Yang ;
Deng, Wankun ;
Ma, Lili ;
Zhang, Ying ;
Liu, Zexian ;
Xue, Yu .
SCIENTIFIC REPORTS, 2016, 6